×

Existence of BV flow via elliptic regularization. (English) Zbl 07922232

Summary: We investigate a mean curvature flow obtained via elliptic regularization, and prove that it is not only a Brakke flow, but additionally a generalized BV flow proposed by S. Stuvard and Y. Tonegawa [Adv. Calc. Var. 17, No. 1, 33–78 (2024; Zbl 1533.53077)]. In particular, we show that the change in volume of the evolving phase can be expressed in terms of the generalized mean curvature of the Brakke flow.

MSC:

53E10 Flows related to mean curvature
35B65 Smoothness and regularity of solutions to PDEs

Citations:

Zbl 1533.53077

References:

[1] L. Bertini, P. Buttà, and A. Pisante. Stochastic Allen-Cahn approximation of the mean curvature flow: large deviations upper bound. Archive for Rational Mechanics and Analysis, 224(2):659-707, (2017). · Zbl 1366.35193
[2] K. A. Brakke. The Motion of a Surface by Its Mean Curvature., volume 20 of Mathematical notes. Princeton University Press, Princeton, 1978. · Zbl 0386.53047
[3] Y. G. Chen, Y. Giga, and S. Goto. Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. Journal of differential geometry, 33(3):749-786, (1991). · Zbl 0696.35087
[4] N. Edelen. The free-boundary brakke flow. Journal für die reine und angewandte Mathematik (Crelles Journal), 2020(758):95-137, (2020). · Zbl 1433.53124
[5] L. C. Evans and R. F. Gariepy. Measure theory and fine properties of functions. Text-books in Mathematics. CRC Press, revised edition, 2015. · Zbl 1310.28001
[6] L. C. Evans and J. Spruck. Motion of level sets by mean curvature. I. Journal of Differential Geometry, 33(3):635-681, (1991). · Zbl 0726.53029
[7] J. Fischer, S. Hensel, T. Laux, and T. Simon. The local structure of the energy landscape in multiphase mean curvature flow: Weak-strong uniqueness and stability of evolutions. arXiv preprint arXiv:, (2020). arXiv: 2003.05478
[8] J. E. Hutchinson. Second fundamental form for varifolds and the existence of surfaces minimising curvature. Indiana University Mathematics Journal, 35(1):45-71, (1986). · Zbl 0561.53008
[9] T. Ilmanen. Elliptic regularization and partial regularity for motion by mean curvature. Memoirs of the American Mathematical Society, 108(520), (1994). · Zbl 0798.35066
[10] K. Kasai and Y. Tonegawa. A general regularity theory for weak mean curvature flow. Calculus of Variations and Partial Differential Equations, 50(1):1-68, (2014). · Zbl 1298.53063
[11] T. Laux and F. Otto. Convergence of the thresholding scheme for multi-phase mean-curvature flow. Calculus of Variations and Partial Differential Equations, 55(5):1-74, (2016). · Zbl 1388.35121
[12] T. Laux and T. M. Simon. Convergence of the Allen-Cahn equation to multiphase mean curvature flow. Communications on Pure and Applied Mathematics, 71(8):1597-1647, (2018). · Zbl 1393.35122
[13] S. Luckhaus and T. Sturzenhecker. Implicit time discretization for the mean curvature flow equation. Calculus of variations and partial differential equations, 3(2):253-271, (1995). · Zbl 0821.35003
[14] F. Maggi. Sets of finite perimeter and geometric variational problems: an introduction to Geometric Measure Theory, volume 135 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2012. · Zbl 1255.49074
[15] L. Mugnai and M. Röger. The Allen-Cahn action functional in higher dimensions. Interfaces and Free Boundaries, 10(1):45-78, (2008). · Zbl 1288.93096
[16] F. Schulze and B. White. A local regularity theorem for mean curvature flow with triple edges. Journal für die reine und angewandte Mathematik (Crelles Journal), 2020(758):281-305, (2020). · Zbl 1431.53101
[17] L. Simon. Lectures on geometric measure theory, volume 3 of Proceedings of the Centre for Mathematical Analysis. Australian National University, Canberra, 1983. · Zbl 0546.49019
[18] S. Stuvard and Y. Tonegawa. End-time regularity theorem for Brakke flows. arXiv preprint, arXiv:, (2022). arXiv: 2212.07727
[19] S. Stuvard and Y. Tonegawa. On the existence of canonical multi-phase Brakke flows. Advances in Calculus of Variations, (2022). Ahead of print, . Digital Object Identifier: https://doi.org/10.1515/acv-2021-0093 Google Scholar: Lookup Link · Zbl 1533.53077 · doi:10.1515/acv-2021-0093
[20] K. Takasao and Y. Tonegawa. Existence and regularity of mean curvature flow with transport term in higher dimensions. Mathematische Annalen, 364(3):857-935, (2016). · Zbl 1351.53083
[21] Y. Tonegawa. A second derivative hölder estimate for weak mean curvature flow. Advances in Calculus of Variations, 7(1):91-138, (2014). · Zbl 1283.53064
[22] Y. Tonegawa. Brakke’s Mean Curvature Flow: An Introduction. SpringerBriefs in Mathematics. Springer, Singapore, 2019. · Zbl 1448.49002
[23] B. White. A local regularity theorem for mean curvature flow. Annals of Mathematics, 161(3):1487-1519, (2005). · Zbl 1091.53045
[24] B. White. Mean curvature flow (math 258) lecture notes. https://web.stanford.edu/ ochodosh/MCFnotes.pdf, 2015.
[25] B. White. Mean curvature flow with boundary. Ars Inveniendi Analytica, page 43, (2021). arXiv:. arXiv: 1901.03008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.