×

An ultra-weak space-time variational formulation for the Schrödinger equation. (English) Zbl 07922209

Summary: We present a well-posed ultra-weak space-time variational formulation for the time-dependent version of the linear Schrödinger equation with an instationary Hamiltonian. We prove optimal inf-sup stability and introduce a space-time Petrov-Galerkin discretization with optimal discrete inf-sup stability.
We show norm-preservation of the ultra-weak formulation. The inf-sup optimal Petrov-Galerkin discretization is shown to be asymptotically norm-preserving, where the deviation is shown to be in the order of the discretization. In addition, we introduce a Galerkin discretization, which has suboptimal inf-sup stability but exact norm-preservation.
Numerical experiments underline the performance of the ultra-weak space-time variational formulation, especially for non-smooth initial data.

MSC:

35Q41 Time-dependent Schrödinger equations and Dirac equations
35L15 Initial value problems for second-order hyperbolic equations
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs

References:

[1] Andreev, R., Stability of sparse space-time finite element discretizations of linear parabolic evolution equations, IMA J. Numer. Anal., 33, 1, 242-260, 2013 · Zbl 1262.65114
[2] Azérad, P., Analyse des équations de Navier-Stokes en bassin peu profond et de l’équation de transport, 1996, Université de Neuchatel, PhD thesis
[3] Baudouin, L.; Kavian, O.; Puel, J.-P., Regularity for a Schrödinger equation with singular potentials and application to bilinear optimal control, J. Differ. Equ., 216, 1, 188-222, 2005 · Zbl 1109.35094
[4] Beranek, N.; Reinhold, M. A.; Urban, K., A space-time variational method for optimal control problems: well-posedness, stability and numerical solution, Comput. Optim. Appl., 86, 767-794, 2023 · Zbl 07752375
[5] Brunken, J.; Smetana, K.; Urban, K., (Parametrized) first order transport equations: realization of optimally stable Petrov-Galerkin methods, SIAM J. Sci. Comput., 41, 1, A592-A621, 2019 · Zbl 1428.65077
[6] Bui-Thanh, T.; Demkowicz, L.; Ghattas, O., Constructively well-posed approximation methods with unity inf-sup and continuity constants for partial differential equations, Math. Comput., 82, 284, 1923-1952, 2013 · Zbl 1281.65129
[7] Cazenave, T., Semilinear Schroedinger Equations, 2003, Am. Math. Soc.: Am. Math. Soc. Providence, R.I. · Zbl 1055.35003
[8] Ciaramella, G., Exact and non-smooth control of quantum spin systems, 2015, Universität Würzburg, Phd thesis
[9] Dahmen, W.; Huang, C.; Schwab, C.; Welper, G., Adaptive Petrov-Galerkin methods for first order transport equations, SIAM J. Numer. Anal., 50, 5, 2420-2445, 2012 · Zbl 1260.65091
[10] Dautray, R.; Lions, J.-L., Mathematical Analysis and Numerical Methods for Science and Technology, vol. 5 - Evolution Problems I, 1992, Springer-Verlag: Springer-Verlag Berlin · Zbl 0755.35001
[11] Demkowicz, L.; Gopalakrishnan, J., A class of discontinuous Petrov-Galerkin methods. II. Optimal test functions, Numer. Methods Partial Differ. Equ., 27, 1, 70-105, 2011 · Zbl 1208.65164
[12] Demkowicz, L.; Gopalakrishnan, J.; Nagaraj, S.; Sepulveda, P., A spacetime DPG method for the Schrodinger equation, SIAM J. Numer. Anal., 55, 4, 1740-1759, 2017 · Zbl 1369.65122
[13] Dörfler, W., A time- and spaceadaptive algorithm for the linear time-dependent Schrödinger equation, Numer. Math., 73, 4, 419-448, 1996 · Zbl 0860.65097
[14] Gómez, S.; Moiola, A., A space-time Trefftz discontinuous Galerkin method for the linear Schrödinger equation, SIAM J. Numer. Anal., 60, 2, 688-714, 2022 · Zbl 1491.65093
[15] Haasdonk, B., Reduced basis methods for parametrized PDEs — a tutorial, (Benner, P.; Cohen, A.; Ohlberger, M.; Willcox, K., Model Reduction and Approximation, 2017, SIAM: SIAM Philadelphia), 65-136, chapter 2
[16] Haasdonk, B.; Ohlberger, M., Reduced basis method for finite volume approximations of parametrized linear evolution equations, Modél. Math. Anal. Numér., 42, 2, 277-302, 2008 · Zbl 1388.76177
[17] Hain, S., The Schrödinger Equation: Theory, Numerical Approximation and Model Reduction, Sept. 2023, Ulm University, PhD thesis
[18] Henning, J.; Palitta, D.; Simoncini, V.; Urban, K., An ultraweak space-time variational formulation for the wave equation: analysis and efficient numerical solution, ESAIM: M2AN, 56, 4, 1173-1198, 2022 · Zbl 1497.35312
[19] Hesthaven, J. S.; Rozza, G.; Stamm, B., Certified Reduced Basis Methods for Parame-Trized Partial Differential Equations, 2016, Springer · Zbl 1329.65203
[20] Jerome, J. W., Time dependent closed quantum systems: nonlinear Kohn-Sham potential operators and weak solutions, J. Math. Anal. Appl., 429, 2, 995-1006, 2015 · Zbl 1405.35174
[21] Jerome, J. W., Consistency of local density approximations and quantum corrections for time-dependent quantum systems, Appl. Anal., 1-21, 2019
[22] Jerome, J. W.; Polizzi, E., Discretization of time-dependent quantum systems: real-time propagation of the evolution operator, Appl. Anal., 93, 12, 2574-2597, 2014 · Zbl 1304.35591
[23] Langer, U.; Steinbach, O.; Tröltzsch, F.; Yang, H., Unstructured space-time finite element methods for optimal sparse control of parabolic equations, (Herzog, R.; Heinkenschloss, M.; Kalise, D.; Stadler, G.; Trélat, E., Optimization and Control for Partial Differential Equations, 2022, De Gruyter: De Gruyter Berlin, Boston), 167-188 · Zbl 1487.49004
[24] Lions, J.-L.; Magenes, E., Problèmes aux limites non homogènes et applications, vol. 2, Travaux et Recherches Mathématiques, vol. 18, 1968, Dunod: Dunod Paris · Zbl 0165.10801
[25] Mollet, C., Parabolic PDEs in Space-Time Formulations: Stability for Petrov-Galerkin Discretizations with B-Splines and Existence of Moments for Problems with Random Coefficients, July 2016, Universität zu Köln, PhD thesis
[26] Nečas, J., Sur une méthode pour résoudre les équations aux dérivées partielles du type elliptique, voisine de la variationnelle, Ann. Sc. Norm. Super. Pisa, Cl. Sci., 3, 16, 305-326, 1962 · Zbl 0112.33101
[27] Quarteroni, A.; Manzoni, A.; Negri, F., Reduced Basis Methods for Partial Differential Equations: An Introduction, 2016, Springer · Zbl 1337.65113
[28] Schwab, C.; Stevenson, R., Space-time adaptive wavelet methods for parabolic evolution problems, Math. Comput., 78, 267, 1293-1318, 2009 · Zbl 1198.65249
[29] Sprengel, M., A Theoretical and Numerical Analysis of a Kohn-Sham Equation and Related Control Problems, 2017, Universität Würzburg, PhD thesis
[30] Sprengel, M.; Ciaramella, G.; Borzì, A., A theoretical investigation of time-dependent Kohn-Sham equations, SIAM J. Math. Anal., 49, 3, 1681-1704, 2017 · Zbl 1365.35132
[31] Sprengel, M.; Ciaramella, G.; Borzì, A., Investigation of optimal control problems governed by a time-dependent Kohn-Sham model, J. Dyn. Control Syst., 24, 4, 657-679, 2018 · Zbl 1407.35170
[32] Steinbach, O.; Urzúa-Torres, C., A new approach to space-time boundary integral equations for the wave equation, SIAM J. Math. Anal., 54, 2, 1370-1392, 2022 · Zbl 1484.35145
[33] Steinbach, O.; Zank, M., A generalized inf-sup stable variational formulation for the wave equation, J. Math. Anal. Appl., 505, 1, Article 125457 pp., 2022 · Zbl 1517.65091
[34] Urban, K.; Patera, A. T., An improved error bound for reduced basis approximation of linear parabolic problems, Math. Comput., 83, 288, 1599-1615, 2014 · Zbl 1320.65129
[35] Xu, J.; Zikatanov, L., Some observations on Babuška and Brezzi theories, Numer. Math., 94, 1, 195-202, 2003 · Zbl 1028.65115
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.