×

A blow-up criterion for the strong solutions to the two-dimensional non-isothermal inhomogeneous liquid crystal flow with density-dependent viscosity. (English) Zbl 07922068

Summary: We study an initial and boundary value problem to the two dimensional non-isothermal inhomogeneous nematic liquid crystal flow with non-negative density. It is shown that the strong solution exists globally if the gradient of viscosity satisfies \(\| \nabla\mu (\rho) \|_{L^{\infty} (0, T; L^p)} < \infty\). As an application, we establish the global well-posedness of strong solution to the two-dimensional non-isothermal inhomogeneous nematic liquid crystal flow with constant viscosity for general large initial data.

MSC:

35Q35 PDEs in connection with fluid mechanics
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
Full Text: DOI

References:

[1] D. Bian and Y. Xiao, Global well-posedness of non-isothermal inhomogeneous nematic liquid crystal flows, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 1243-1272. doi: 10.3934/dcdsb.2020161. · Zbl 1470.35275 · doi:10.3934/dcdsb.2020161
[2] H. Chen and X. Zhong, Local well-posedness to the 2D Cauchy problem of non-isothermal nonhomogeneous nematic liquid crystal flows with vacuum at infinity, Commun. Pure Appl. Anal., 21 (2022), 3141-3169. doi: 10.3934/cpaa.2022093. · Zbl 1513.76026 · doi:10.3934/cpaa.2022093
[3] B. Desjardins, Regularity results for two-dimensional flows of multiphase viscous fluids, Arch. Rational Mech. Anal., 137 (1997), 135-158. doi: 10.1007/s002050050025. · Zbl 0880.76090 · doi:10.1007/s002050050025
[4] S. Ding, J. Huang and F. Xia, Global existence of strong solutions for incompressible hydrodynamic flow of liquid crystals with vacuum, Filomat, 27 (2013), 1247-1257. doi: 10.2298/FIL1307247D. · Zbl 1324.76014 · doi:10.2298/FIL1307247D
[5] E. Feireisl, Dynamics of Viscous Compressible Fluids, Oxford University Press, Oxford, 2004. · Zbl 1080.76001
[6] J. Gao, Q. Tao and Z. Yao, Strong solutions to the density-dependent incompressible nematic liquid crystal flows, J. Differential Equations, 260 (2016), 3691-3748. doi: 10.1016/j.jde.2015.10.047. · Zbl 1333.35193 · doi:10.1016/j.jde.2015.10.047
[7] X. Hu and D. Wang, Global solution to the three-dimensional incompressible flow of liquid crystals, Comm. Math. Phys., 296 (2010), 861-880. doi: 10.1007/s00220-010-1017-8. · Zbl 1192.82080 · doi:10.1007/s00220-010-1017-8
[8] X. Huang and Y. Wang, Global strong solution with vacuum to the two dimensional density-dependent Navier-Stokes system, SIAM J. Math. Anal., 46 (2014), 1771-1788. doi: 10.1137/120894865. · Zbl 1302.35294 · doi:10.1137/120894865
[9] J. Li, Global strong solutions to the inhomogeneous incompressible nematic liquid crystal flow, Methods Appl. Anal., 22 (2015), 201-220. doi: 10.4310/MAA.2015.v22.n2.a4. · Zbl 1322.35117 · doi:10.4310/MAA.2015.v22.n2.a4
[10] L. Li, Q. Liu and X. Zhong, Global strong solution to the two-dimensional density-dependent nematic liquid crystal flows with vacuum, Nonlinearity, 30 (2017), 4062-4088. doi: 10.1088/1361-6544/aa8426. · Zbl 1386.76016 · doi:10.1088/1361-6544/aa8426
[11] X. Li, Global strong solution for the incompressible flow of liquid crystals with vacuum in dimension two, Discrete Contin. Dyn. Syst., 37 (2017), 4907-4922. doi: 10.3934/dcds.2017211. · Zbl 1364.35242 · doi:10.3934/dcds.2017211
[12] G. Lieberman, Oblique Derivative Problems for Elliptic Equations, World Scientific Publishing, Hackensack, NJ, 2013. doi: 10.1142/8679. · Zbl 1273.35006 · doi:10.1142/8679
[13] P. L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 1. Incompressible Models, Oxford Lecture Ser. Math. Appl., 10, Oxford Sci. Publ., The Clarendon Press, Oxford University Press, New York, 1998. · Zbl 0908.76004
[14] Q. Liu, S. Liu, W. Tan and X. Zhong, Global well-posedness of the 2D nonhomogeneous incompressible nematic liquid crystal flows, J. Differ. Equations, 261 (2016), 6521-6569. doi: 10.1016/j.jde.2016.08.044. · Zbl 1364.76015 · doi:10.1016/j.jde.2016.08.044
[15] Y. Liu, Global regularity to the 2D non-isothermal inhomogeneous nematic liquid crystal flows, Appl. Anal., 101 (2022), 2686-2706. doi: 10.1080/00036811.2020.1819534. · Zbl 1492.35225 · doi:10.1080/00036811.2020.1819534
[16] Z. Liu, Y. Liu and Y. Jiang, Global solvability of 3D non-isothermal incompressible nematic liquid crystal flows, AIMS Math., 7 (2022), 12536-12565. doi: 10.3934/math.2022695. · doi:10.3934/math.2022695
[17] B. Lü and S. Song, On local strong solutions to the three-dimensional nonhomogeneous Navier-Stokes equations with density-dependent viscosity and vacuum, Nonlinear Anal. Real World Appl., 46 (2019), 58-81. doi: 10.1016/j.nonrwa.2018.09.001. · Zbl 1412.35225 · doi:10.1016/j.nonrwa.2018.09.001
[18] L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 13 (1959), 115-162. · Zbl 0088.07601
[19] I. Stewart, The Static and Dynamic Continuum Theory of Liquid Crystals, Taylor and Francis, London, New York, 2004. doi: 10.1201/9781315272580. · doi:10.1201/9781315272580
[20] H. Wen and S. Ding, Solutions of incompressible hydrodynamic flow of liquid crystals, Nonlinear Anal. Real World Appl., 12 (2011), 1510-1531. doi: 10.1016/j.nonrwa.2010.10.010. · Zbl 1402.76021 · doi:10.1016/j.nonrwa.2010.10.010
[21] X. Zhong, A remark on global strong solution of two-dimensional inhomogeneous nematic liquid crystal flows in a bounded domain, Math. Nachr., 294 (2021), 1428-1443. doi: 10.1002/mana.201900218. · Zbl 1523.76007 · doi:10.1002/mana.201900218
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.