×

Foundations of iterated star maps and their use in combinatorics. (English) Zbl 07921878

Summary: We develop a framework for nonstandard analysis that gives foundations to the interplay between external and internal iterations of the star map, and we present a few examples to show the strength and flexibility of such a nonstandard technique for applications in combinatorial number theory.

MSC:

03H05 Nonstandard models in mathematics
05A17 Combinatorial aspects of partitions of integers
05D10 Ramsey theory
03C55 Set-theoretic model theory
03E30 Axiomatics of classical set theory and its fragments

References:

[1] Ballard, D.; Hrbáček, K., Standard foundations for nonstandard analysis, J. Symb. Log., 57, 741-748, 1992 · Zbl 0766.03038
[2] Mitchell Barrett, J.; Lupini, M.; Moreira, J., On Rado conditions for nonlinear Diophantine equations, Eur. J. Comb., 94, Article 103277 pp., 2021 · Zbl 1468.11076
[3] Benci, V., A construction of a nonstandard universe, (Albeverio, S.; etal., Advances in Dynamical Systems and Quantum Physics, 1995, World Scientific), 207-237
[4] Chang, C. C.; Keisler, H. J., Model Theory, 1990, North-Holland: North-Holland Amsterdam · Zbl 0697.03022
[5] Cutland, N. J., Loeb Measures in Practice: Recent Advances, Lecture Notes in Mathematics, vol. 1751, 2001, Springer
[6] Di Nasso, M., \({}^\ast\text{ZFC} \): an axiomatic *approach to nonstandard methods, C. R. Acad. Sci. Paris, Ser. I, 324, 9, 963-969, 1997 · Zbl 0906.03066
[7] Di Nasso, M., An axiomatic presentation of the nonstandard methods in mathematics, J. Symb. Log., 67, 315-325, 2002 · Zbl 1005.03053
[8] Di Nasso, M., Lecture Notes of the Master Course “Ultrafiltri e Metodi Nonstandard”, 2011, Università di Pisa: Università di Pisa Italy
[9] Di Nasso, M., Iterated hyper-extensions and an idempotent ultrafilter proof of Rado’s Theorem, Proc. Am. Math. Soc., 143, 4, 1479-1761, 2015, (electronically published Dec. 8, 2014) · Zbl 1386.03057
[10] Di Nasso, M., Hypernatural Numbers as Ultrafilters, 2015, Springer, Chapter XI of “Nonstandard Analysis for the Working Mathematician” (P.A. Loeb and M. Wolff, eds.) · Zbl 1357.03003
[11] M. Di Nasso, The magic of tensor pairs, draft.
[12] Di Nasso, M.; Goldbring, I.; Lupini, M., Nonstandard Methods in Ramsey Theory and Combinatorial Number Theory, Lecture Notes in Mathematics, vol. 2239, 2019, Springer · Zbl 1432.05001
[13] M. Di Nasso, R. Jin, Different levels of infinity and applications in combinatorics, in preparation.
[14] Di Nasso, M.; Luperi Baglini, L., Ramsey properties of nonlinear Diophantine equations, Adv. Math., 324, 84-117, 2018 · Zbl 1376.05159
[15] Di Nasso, M.; Ragosta, M., Monochromatic exponential triples: an ultrafilter proof, Proc. Am. Math. Soc., 152, 81-87, 2024 · Zbl 1525.05187
[16] Gaifman, H., Uniform Extension Operators for Models and Their Applications, Sets, Models and Recursion Theory, 122-135, 1967, North-Holland · Zbl 0174.01502
[17] Goodyear, P., Double enlargement of topological spaces, Math. Log. Q., 30, 389-392, 1984 · Zbl 0587.54066
[18] Graham, R.; Rothschild, B.; Spencer, J., Ramsey Theory, 1990, Wiley: Wiley New York · Zbl 0705.05061
[19] Hrbáček, K., Internally iterated ultrapowers, (Nonstandard Models of Arithmetic and Set Theory. Nonstandard Models of Arithmetic and Set Theory, Contemporary Mathematics, vol. 361, 2004, American Mathematical Society), 87-120 · Zbl 1067.03072
[20] Hrbáček, K., Multi-level nonstandard analysis and the axiom of choice, J. Log. Anal., 16, 5, 1-29, 2024 · Zbl 07904075
[21] Jech, T., Set Theory, 2002, Springer: Springer Berlin · Zbl 0988.03004
[22] Jin, R., A simple combinatorial proof of Szemeredi’s theorem via three levels of infinities, Discrete Anal., Article 15 pp., September 25, 2023
[23] Khinchin, A. I., Three Pearls of Number Theory, 1952, Graylock Press: Graylock Press Rochester, N.Y., Translated from the 2nd (1948) rev. Russian ed. by F. Bagemihl, H. Komm, and W. Seidel · Zbl 0048.27202
[24] Keisler, H. J., Foundations of Infinitesimal Calculus, 1976, Prindle Weber & Schmidt, The updated version of 2022 is freely available at the author’s webpage · Zbl 0333.26001
[25] Keisler, H. J., The ultraproduct construction, (Bergelson, V.; etal., Ultrafilters Across Mathematics. Ultrafilters Across Mathematics, Contemporary Mathematics, vol. 530, 2010, Amer. Math. Soc.), 163-179 · Zbl 1242.03059
[26] Kunen, K., Some applications of iterated ultrapowers in set theory, Ann. Math. Log., 1, 179-227, 1970 · Zbl 0236.02053
[27] Luperi Baglini, L., Hyperintegers and Nonstandard Techniques in Combinatorics of Numbers, 2012, University of Siena, Available at
[28] Luperi Baglini, L., Partition regularity of nonlinear polynomials: a nonstandard approach, Integers, 14, Article A30 pp., 2014 · Zbl 1297.05234
[29] Mitchell, W. J.; Steel, J. R., Fine Structure and Iteration Trees, Lecture Notes in Logic, Series Number 3, 2017, Cambridge University Press
[30] Molchanov, V. A., The use of double nonstandard enlargements in topology, Sib. Math. J., 30, 397-402, 1989 · Zbl 0718.54051
[31] Sahasrabudhe, J., Exponential patterns in arithmetic Ramsey theory, Acta Arith., 182, 1, 13-42, 2018 · Zbl 1390.05234
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.