×

Forecasting systemic risk of China’s banking industry by partial differential equations model and complex network. (English) Zbl 07921279

Summary: The monitoring and controlling of systemic risk have increasingly become the focus of attention in the financial field. It is important and difficult to accurately forecast systemic financial risk. In this paper, we propose a spatio-temporal partial differential equation model to describe the systemic risk of China’s Banking Industry based on network, clustering, and real date of 24 China’s A-share listed banks. The model considers the combined influence of local risk and transboundary contagion effects, and the prediction relative accuracy is up to 95%. Simulation results confirm that strict joint control measures, the timeliness of central bank intervention, and differences in bank strategies are efficient for reducing systemic risk. To our knowledge, this is the first paper to apply a PDE model to forecast systemic financial risk.

MSC:

35Q80 Applications of PDE in areas other than physics (MSC2000)
35K57 Reaction-diffusion equations
91B30 Risk theory, insurance (MSC2010)
91B84 Economic time series analysis
Full Text: DOI

References:

[1] D. Acemoglu, A. Ozdaglar and A. Tahbaz-Salehi, Systemic risk and stability in financial networks, National Bureau of Economic Research, Inc, 2013, (2). DOI: 10.1257/aer.20130456. · doi:10.1257/aer.20130456
[2] V. V. Acharya, L. H. Pedersen, T. Philippon and M. Richardson, Measur-ing systemic risk, The review of financial studies, 2017, 30(1), 2-47. DOI: 10.1093/rfs/hhw088. · doi:10.1093/rfs/hhw088
[3] T. Adrian and M. K. Brunnermeier, CoVaR, Tech. rep., National Bureau of Economic Research, 2011. DOI: http://www.nber.org/papers/w17454.
[4] M. Alexandre, T. C. Silva, C. Connaughton and F. A. Rodrigues, The drivers of systemic risk in financial networks: a data-driven machine learning analysis, Chaos, Solitons & Fractals, 2021, 153, 111588. DOI: 10.1016/j.chaos.2021.111588. · doi:10.1016/j.chaos.2021.111588
[5] F. Allen and D. Gale, Financial contagion, Journal of political economy, 2000, 108(1), 1-33. DOI: 10.1086/262109. · doi:10.1086/262109
[6] L. Allen, T. G. Bali and Y. Tang, Does systemic risk in the financial sector predict future economic downturns?, The Review of Financial Studies, 2012, 25(10), 3000-3036. DOI: 10.1093/rfs/hhs094. · doi:10.1093/rfs/hhs094
[7] S. Behrendt, T. Dimpfl, F. J. Peter and D. J. Zimmermann, Rtransferentropy-quantifying information flow between different time series using effective trans-fer entropy, SoftwareX, 2019, 10, 100265. DOI: 10.1016/j.softx.2019.100265. · doi:10.1016/j.softx.2019.100265
[8] A. R. Benson, D. F. Gleich and J. Leskovec, Higher-order organization of complex networks, Science, 2016, 353(6295), 163-166. DOI: 10.1126/sci-ence.aad9029. · doi:10.1126/sci-ence.aad9029
[9] M. Billio, M. Getmansky, A. W. Lo and L. Pelizzon, Econometric measures of connectedness and systemic risk in the finance and insurance sectors, Journal of financial economics, 2012, 104(3), 535-559. DOI: 10.1016/j.jfineco.2011.12.010. · doi:10.1016/j.jfineco.2011.12.010
[10] R. Bookstaber, M. Paddrik and B. Tivnan, An agent-based model for financial vulnerability, Journal of Economic Interaction and Coordination, 2018, 13(2), 433-466. DOI: 10.1016/j.jbankfin.2013.02.032. · doi:10.1016/j.jbankfin.2013.02.032
[11] F. Brauer, Compartmental models in epidemiology, Mathematical epidemiol-ogy, 2008, 19-79. DOI: 10.1007/978-3-540-78911-6. · doi:10.1007/978-3-540-78911-6
[12] C. Brownlees and R. F. Engle, Srisk: A conditional capital shortfall measure of systemic risk, The Review of Financial Studies, 2017, 30(1), 48-79. DOI: 10.1093/rfs/hhw060. · doi:10.1093/rfs/hhw060
[13] L. Faes, D. Marinazzo, A. Montalto and G. Nollo, Lag-specific transfer entropy as a tool to assess cardiovascular and cardiorespiratory information transfer, IEEE Transactions on Biomedical Engineering, 2014, 61(10), 2556-2568. DOI: 10.1109/TBME.2014.2323131. · doi:10.1109/TBME.2014.2323131
[14] D. Fanelli and F. Piazza, Analysis and forecast of COVID-19 spreading in china, italy and france, Chaos, Solitons & Fractals, 2020, 134, 109761. DOI: 10.1016/j.chaos.2020.109761. · Zbl 1483.92130 · doi:10.1016/j.chaos.2020.109761
[15] A. Friedman, Partial Differential Equations of Parabolic Type, Courier Dover Publications, 2008. DOI: 10.1007/978-3-0348-7922-4. · doi:10.1007/978-3-0348-7922-4
[16] Y.-C. Gao, R. Tan, C.-J. Fu and S.-M. Cai, Revealing stock market risk from information flow based on transfer entropy: The case of chinese a-shares, Physica A: Statistical Mechanics and its Applications, 2023, 128982. DOI: 10.1016/j.physa.2023.128982. · doi:10.1016/j.physa.2023.128982
[17] C.-P. Georg, The effect of the interbank network structure on contagion and common shocks, Journal of Banking & Finance, 2013, 37(7), 2216-2228. DOI: 10.1016/j.jbankfin.2013.02.032. · doi:10.1016/j.jbankfin.2013.02.032
[18] R. Greenwood, A. Landier and D. Thesmar, Vulnerable banks, Journal of Fi-nancial Economics, 2015, 115(3), 471-485. DOI: 10.1016/j.jfineco.2014.11.006. · doi:10.1016/j.jfineco.2014.11.006
[19] K. Hlavácková-Schindler, Equivalence of granger causality and transfer entropy: A generalization, Applied Mathematical Sciences, 2011, 5(73), 3637-3648. DOI: https://www.researchgate.net/publication/233965869. · Zbl 1242.62096
[20] Z. Jing, Z. Liu, L. Qi and X. Zhang, Spillover effects of banking systemic risk on firms in china: A financial cycle analysis, International Review of Financial Analysis, 2022, 82, 102171.
[21] A. Karlekar, A. Seal, O. Krejcar and C. Gonzalo-Martin, Fuzzy k-means using non-linear s-distance, IEEE Access, 2019, 7, 55121-55131. DOI: 10.1109/AC-CESS.2019.2910195. · doi:10.1109/AC-CESS.2019.2910195
[22] G. G. Kaufman and K. E. Scott, What is systemic risk, and do bank regulators retard or contribute to it?, The independent review, 2003, 7(3), 371-391. DOI: http://www.jstor.org/stable/24562449.
[23] Y. Kim, J. Kim and S.-H. Yook, Information transfer network of global market indices, Physica A: Statistical Mechanics and its Applications, 2015, 430, 39-45. DOI: 10.1016/j.physa.2015.02.081. · doi:10.1016/j.physa.2015.02.081
[24] J. C. Lagarias, J. A. Reeds, M. H. Wright and P. E. Wright, Convergence properties of the nelder-mead simplex method in low dimensions, SIAM Journal on optimization, 1998, 9(1), 112-147. DOI: 10.1137/S1052623496303470. · Zbl 1005.90056 · doi:10.1137/S1052623496303470
[25] J. D. Murray, Mathematical Biology: I. An Introduction, Springer, 2002. DOI: https://doi.org/10.1007/978-0-387-22437-4. · Zbl 1006.92001 · doi:10.1007/978-0-387-22437-4
[26] J. D. Murray, Reaction diffusion, chemotaxis, and nonlocal mechanisms, Math-ematical Biology: I. An Introduction, 2002, 395-417. DOI: 10.1007/978-0-387-22437-4. · doi:10.1007/978-0-387-22437-4
[27] M. S. Murugan, et al., Large-scale data-driven financial risk management & analysis using machine learning strategies, Measurement: Sensors, 2023, 27, 100756. DOI: 10.1016/j.measen.2023.100756. · doi:10.1016/j.measen.2023.100756
[28] I. V. Oseledets, Tensor-train decomposition, SIAM Journal on Scientific Com-puting, 2011, 33(5), 2295-2317. DOI: 10.1137/090752286. · Zbl 1232.15018 · doi:10.1137/090752286
[29] L. Riccetti, Systemic risk analysis and sifis detection: A proposal for a complete methodology, Available at SSRN 3415730, 2019. DOI: 10.2139/ssrn.3415730. · doi:10.2139/ssrn.3415730
[30] M. S. Risk and R. F. Soundness, Global financial stability report, International Monetary Fund, Washington, 2008.
[31] T. Schreiber, Measuring information transfer, Physical review letters, 2000, 85(2), 461. DOI: 10.1103/PhysRevLett.85.461. · doi:10.1103/PhysRevLett.85.461
[32] F. Sekmen and M. Kurkcu, An early warning system for turkey: the forecasting of economic crisis by using the artificial neural net-works, Asian Economic and Financial Review, 2014, 4(4), 529-543. DOI: https://archive.aessweb.com/index.php/5002/article/view/1176.
[33] K. K. Sharma and A. Seal, Spectral embedded generalized mean based k-nearest neighbors clustering with s-distance, Expert Systems with Applications, 2021, 169, 114326. DOI: 10.1016/j.eswa.2020.114326. · doi:10.1016/j.eswa.2020.114326
[34] J. Shi, C. Wang, H. Wang and X. Yan, Diffusive spatial movement with mem-ory, Journal of Dynamics and Differential Equations, 2020, 32, 979-1002. DOI: 10.1007/s10884-019-09757-y. · Zbl 1439.92215 · doi:10.1007/s10884-019-09757-y
[35] T. C. Silva, M. A. da Silva and B. M. Tabak, Systemic risk in financial systems: a feedback approach, Journal of Economic Behavior & Organization, 2017, 144, 97-120. DOI: 10.1016/j.jebo.2017.09.013. · doi:10.1016/j.jebo.2017.09.013
[36] H. Smaoui, K. Mimouni, H. Miniaoui and A. Temimi, Funding liquidity risk and banks’ risk-taking: Evidence from islamic and conventional banks, Pacific-Basin Finance Journal, 2020, 64, 101436.
[37] P. Song and Y. Xiao, Estimating time-varying reproduction number by deep learning techniques, J. Appl. Anal. Comput., 2022, 12(3), 1077-1089. DOI: 10.11948/20220136. · Zbl 07905857 · doi:10.11948/20220136
[38] J. Suss and H. Treitel, Predicting Bank Distress in the UK with Machine Learn-ing, 2019. DOI: 10.2139/ssrn.3465753. · doi:10.2139/ssrn.3465753
[39] A. Tobias and M. K. Brunnermeier, Covar, The American Economic Review, 2016, 106(7), 1705-1741. DOI: 10.1257/aer.20120555. · doi:10.1257/aer.20120555
[40] E. Tölö, Predicting systemic financial crises with recurrent neu-ral networks, Journal of Financial Stability, 2020, 49, 100746. DOI: 10.1016/j.jfs.2020.100746. · doi:10.1016/j.jfs.2020.100746
[41] G.-J. Wang and C.-L. Zhu, BP-CVAR: A novel model of estimating cvar with back propagation algorithm, Economics Letters, 2021, 209, 110-125. DOI: 10.1016/j.econlet.2021.110125. · Zbl 1479.91450 · doi:10.1016/j.econlet.2021.110125
[42] H. Wang, F. Wang and K. Xu, Modeling information diffusion in on-line social networks with partial differential equations, 7, 2020. DOI: 10.48550/arXiv.1310.0505. · Zbl 1446.91008 · doi:10.48550/arXiv.1310.0505
[43] L. Wang, S. Li and T. Chen, Investor behavior, information disclosure strategy and counterparty credit risk contagion, Chaos, Solitons & Fractals, 2019, 119, 37-49. DOI: 10.1016/j.chaos.2018.12.007. · Zbl 1448.91316 · doi:10.1016/j.chaos.2018.12.007
[44] Y. Wang and H. Wang, Using networks and partial differential equations to forecast bitcoin price movement, Chaos: An Interdisciplinary Journal of Non-linear Science, 2020, 30(7), 073127. DOI: 10.1063/5.0002759. · doi:10.1063/5.0002759
[45] Y. Wang, H. Wang, S. Chang and A. Avram, Prediction of daily pm 2.5 con-centration in china using partial differential equations, PloS one, 2018, 13(6), e0197666. DOI: 10.1371/journal.pone.0197666. · doi:10.1371/journal.pone.0197666
[46] Y. Wang, H. Wang and S. Zhang, Quantifying prediction and intervention measures for PM2.5 by a PDE model, Journal of Cleaner Production, 2020, 268, 122-131. DOI: 10.1016/j.jclepro.2020.122131. · doi:10.1016/j.jclepro.2020.122131
[47] L. Yang, T. Gao, Y. Lu, et al., Neural network stochastic differential equation models with applications to financial data forecasting, Applied Mathematical Modelling, 2023, 115, 279-299. DOI: 10.1016/j.apm.2022.11.001. · Zbl 07666006 · doi:10.1016/j.apm.2022.11.001
[48] W. Zhang, X. Zhuang, J. Wang and Y. Lu, Connectedness and systemic risk spillovers analysis of chinese sectors based on tail risk network, The North American Journal of Economics and Finance, 2020, 54, 101248. DOI: 10.1016/j.najef.2020.101248. · doi:10.1016/j.najef.2020.101248
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.