×

A fractional Landweber iteration method for simultaneous inversion in a time-fractional diffusion equation. (English) Zbl 07921266

Summary: In the present paper, we study the problem to identify the space-dependent source term and initial value simultaneously for a time-fractional diffusion equation. This inverse problem is ill-posed, and we use the idea of decoupling to turn it into two operator equations based on the Fourier method. To solve the inverse problem, a fractional Landweber regularization method is proposed. Furthermore, we present convergence estimates between the exact solution and the regularized solution by using the a-priori and the a-posteriori parameter choice rules. In order to verify the accuracy and efficiency of the proposed method, several numerical examples are constructed.

MSC:

41A28 Simultaneous approximation
65N21 Numerical methods for inverse problems for boundary value problems involving PDEs
35R11 Fractional partial differential equations
Full Text: DOI

References:

[1] O. P. Agrawal, Solution for a fractional diffusion-wave equation defined in a bounded domain, Fractional Order Calculus and its Applications, 2002, 145-155. · Zbl 1009.65085
[2] A. Babaei, Solving a time-fractional inverse heat conduction problem with an unknown nonlinear boundary condition, J. Math. Model., 2019, 7(1), 85-106. · Zbl 1438.65219
[3] B. Berkowitz, H. Scher and S. E. Silliman, Anomalous transport in laboratory-scale, heterogeneous porous media, Water Resources Research, 2000, 36(1), 149-158.
[4] A. Chen and C. Li, Numerical solution of fractional diffusion-wave equation, Numer. Funct. Anal. Optim., 2016, 37(1), 19-39. · Zbl 1382.65236
[5] R. Courant and D. Hilbert, Methods of mathematical physics -vol.1; vol.2, New York Interscience Publication, 1953, 305(3-4), 121-132. · Zbl 0053.02805
[6] R. Du, W. R. Cao and Z. Z. Sun, A compact difference scheme for the fractional diffusion-wave equation, Appl. Math. Model., 2010, 34(10), 2998-3007. · Zbl 1201.65154
[7] H. Egger and A. Neubauer, Preconditioning Landweber iteration in Hilbert scales, Numer. Math., 2005, 101(4), 643-662. · Zbl 1080.65043
[8] H. W. Engl, M. Hanke and A. Neubauer, Regularization of inverse problems, 375 of Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht, 1996. · Zbl 0859.65054
[9] M. Giona, S. Cerbelli and H. E. Roman, Fractional Diffusion Equation and Relaxation in Complex Viscoelastic Materials, Physica A Statistical Mechanics and its Applications, 1992.
[10] Y. Han, X. Xiong and X. Xue, A fractional Landweber method for solving backward time-fractional diffusion problem, Comput. Math. Appl., 2019, 78(1), 81-91. · Zbl 1442.65224
[11] Y. Hatano and N. Hatano, Dispersive transport of ions in column experiments: An explanation of long-tailed profiles, Water Resources Research, 1998, 34(5), 1027-1034.
[12] L. N. Huynh, Y. Zhou, D. O’Regan and N. H. Tuan, Fractional Landweber method for an initial inverse problem for time-fractional wave equations, Appl. Anal., 2021, 100(4), 860-878. · Zbl 1460.35375
[13] H. Jiang, F. Liu, I. Turner and K. Burrage, Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion equations in a finite do-main, Comput. Math. Appl., 2012, 64(10), 3377-3388. · Zbl 1268.35124
[14] M. Jiang and G. Wang, Convergence studies on iterative algorithms for image reconstruction, IEEE Transactions on Medical Imaging, 2003, 22(5), 569-579.
[15] B. T. Johansson and D. Lesnic, A procedure for determining a spacewise depen-dent heat source and the initial temperature, Applicable Analysis, 2008, 87(3), 265-276. · Zbl 1133.35436
[16] E. Klann and R. Ramlau, Regularization by fractional filter methods and data smoothing, Inverse Problems, 2008, 24(2), 025018, 26. · Zbl 1141.47009
[17] L. Landweber, An iteration formula for Fredholm integral equations of the first kind, Amer. J. Math., 1951, 73, 615-624. · Zbl 0043.10602
[18] X. Li and C. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal., 2009, 47(3), 2108-2131. · Zbl 1193.35243
[19] Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 2007, 225(2), 1533-1552. · Zbl 1126.65121
[20] A. K. Louis, Inverse und Schlecht Gestellte Probleme, Teubner Studienbücher Mathematik. [Teubner Mathematical Textbooks], B. G. Teubner, Stuttgart, 1989. · Zbl 0667.65045
[21] F. Mainardi, Fractional Diffusive Waves in Viscoelastic Solids, 1995.
[22] R. Metzler and J. Klafter, Boundary value problems for fractional diffusion equations, Phys. A, 2000, 278(1-2), 107-125.
[23] A. Neubauer, On Landweber iteration for nonlinear ill-posed problems in Hilbert scales, Numer. Math., 2000, 85(2), 309-328. · Zbl 0963.65058
[24] I. Podlubny, Fractional Differential Equations, 198 of Mathematics in Science and Engineering, Academic Press, Inc., San Diego, CA, 1999. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. · Zbl 0924.34008
[25] C. Ren, X. Xu and S. Lu, Regularization by projection for a backward problem of the time-fractional diffusion equation, J. Inverse Ill-Posed Probl., 2014, 22(1), 121-139. · Zbl 1282.65114
[26] H. E. Roman and P. A. Alemany, Continuous-time random walks and the frac-tional diffusion equation, J. Phys. A, 1994, 27(10), 3407-3410. · Zbl 0827.60057
[27] Z. Ruan, J. Z. Yang and X. Lu, Tikhonov regularisation method for simultane-ous inversion of the source term and initial data in a time-fractional diffusion equation, East Asian J. Appl. Math., 2015, 5(3), 273-300. · Zbl 1457.65086
[28] Z. Ruan and S. Zhang, Simultaneous inversion of time-dependent source term and fractional order for a time-fractional diffusion equation, J. Comput. Appl. Math., 2020, 368, 112566, 15. · Zbl 1454.65108
[29] K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl., 2011, 382(1), 426-447. · Zbl 1219.35367
[30] I. M. Sokolov and J. Klafter, From diffusion to anomalous diffusion: a century after Einstein’s Brownian motion, Chaos, 2005, 15(2), 026103, 7. · Zbl 1080.82022
[31] L. L. Sun, Y. S. Li and Y. Zhang, Simultaneous inversion of the potential term and the fractional orders in a multi-term time-fractional diffusion equation, Inverse Problems, 2021, 37(5), Paper No. 055007, 26. · Zbl 1462.35469
[32] N. H. Tuan, L. N. Huynh, T. B. Ngoc and Y. Zhou, On a backward problem for nonlinear fractional diffusion equations, Appl. Math. Lett., 2019, 92, 76-84. · Zbl 1524.35723
[33] G. M. Vainikko and A. Y. Veretennikov, Iteration Procedures in Ill-Posed Prob-lems, Nauka, Moscow, 1986. · Zbl 0593.65040
[34] J.-G. Wang and T. Wei, An iterative method for backward time-fractional dif-fusion problem, Numer. Methods Partial Differential Equations, 2014, 30(6), 2029-2041. · Zbl 1314.65120
[35] J. Wen, Z.-X. Liu and S.-S. Wang, Conjugate gradient method for simultaneous identification of the source term and initial data in a time-fractional diffusion equation, Applied Mathematics in Science and Engineering, 2022, 30(1), 324-338.
[36] J. Wen, Z.-X. Liu, C.-W. Yue and S.-J. Wang, Landweber iteration method for simultaneous inversion of the source term and initial data in a time-fractional diffusion equation, J. Appl. Math. Comput., 2022, 68(5), 3219-3250. · Zbl 07597397
[37] J. Wen, X.-J. Ren and S.-J. Wang, Simultaneous determination of source term and initial value in the heat conduction problem by modified quasi-reversibility regularization method, Numerical Heat Transfer, Part B: Fundamentals, 2022, 82(3-4), 112-127.
[38] J. Wen, C.-W. Yue, Z.-X. Liu and S.-J. Wang, Fractional tikhonov regulariza-tion method for simultaneous inversion of the source term and initial data in a time-fractional diffusion equation, Rocky Mountain Journal of Mathematics, 2023, 53(1), 249-273. · Zbl 1516.35479
[39] X.-T. Xiong, X.-M. Xue and Z. Qian, A modified iterative regularization method for ill-posed problems, Appl. Numer. Math., 2017, 122, 108-128. · Zbl 1375.65077
[40] F. Yang, J.-L. Fu, P. Fan and X.-X. Li, Fractional Landweber iterative reg-ularization method for identifying the unknown source of the time-fractional diffusion problem, Acta Appl. Math., 2021, 175, Paper No. 13, 19. · Zbl 1476.35339
[41] F. Yang, X. Liu, X.-X. Li and C.-Y. Ma, Landweber iterative regularization method for identifying the unknown source of the time-fractional diffusion equa-tion, Adv. Difference Equ., 2017, Paper No. 388, 15. · Zbl 1444.65052
[42] F. Yang, Y.-P. Ren, X.-X. Li and D.-G. Li, Landweber iterative method for identifying a space-dependent source for the time-fractional diffusion equation, Bound. Value Probl., 2017, Paper No. 163, 19. · Zbl 1386.35470
[43] F. Yang, Y. Zhang and X.-X. Li, Landweber iterative method for identifying the initial value problem of the time-space fractional diffusion-wave equation, Numerical Algorithms, 2020, 83(4), 1509-1530. · Zbl 07191904
[44] L. Yang, Z.-C. Deng and Y.-C. Hon, Simultaneous identification of unknown initial temperature and heat source, Dynam. Systems Appl., 2016, 25(4), 583-602. · Zbl 1362.35337
[45] Y. Zhang, T. Wei and Y.-X. Zhang, Simultaneous inversion of two initial values for a time-fractional diffusion-wave equation, Numer. Methods Partial Differ-ential Equations, 2021, 37(1), 24-43. · Zbl 1535.65175
[46] Y. Zhou, J. Wei He, B. Ahmad and N. Huy Tuan, Existence and regularity results of a backward problem for fractional diffusion equations, Mathematical Methods in the Applied Sciences, 2019, 42(18), 6775-6790. · Zbl 1435.35413
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.