×

The non-existence and existence of non-constant positive solutions for a diffusive autocatalysis model with saturation. (English) Zbl 07921261

Summary: This paper deals with a diffusive autocatalysis model with saturation under Neumann boundary conditions. Firstly, some stability and Turing instability results are obtained. Then by the maximum principle, Hölder inequality and Poincaré inequality, a priori estimates and some basic characterizations of non-constant positive solutions are given. Moreover, some non-existence results are presented for three different situations. In particular, we find that the model does not have any non-constant positive solution when the parameter which represents the saturation rate is large enough. In addition, we use the theories of Leray-Schauder degree and bifurcation to get the existence of non-constant positive solutions, respectively. The steady-state bifurcations at both simple and double eigenvalues are intensively studied and we establish some specific condition to determine the bifurcation direction. Finally, a few of numerical simulations are provided to illustrate theoretical results.

MSC:

35K57 Reaction-diffusion equations
35B35 Stability in context of PDEs
35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs
35B45 A priori estimates in context of PDEs
Full Text: DOI

References:

[1] A. Abbad, S. Abdelmalek, S. Bendoukha, et al., A generalized Degn-Harrison reaction-diffusion system: Asymptotic stability and non-existence results, Non-linear Anal. Real World Appl., 2021, 57, 103191. · Zbl 1454.35213
[2] S. Abdelmalek and S. Bendoukha, On the global asymptotic stability of so-lutions to a generalised Lengyel-Epstein system, Nonlinear Anal. Real World Appl., 2017, 35, 397-413. · Zbl 1367.35085
[3] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 1976, 18, 620-709. · Zbl 0345.47044
[4] X. Y. Chen and W. H. Jiang, Turing-Hopf bifurcation and multi-stable spatio-temporal patterns in the Lengyel-Epstein system, Nonlinear Anal. Real World Appl., 2019, 49, 386-404. · Zbl 1454.35022
[5] Y. Y. Dong, S. B. Li and S. L. Zhang, Hopf bifurcation in a reaction-diffusion model with Degn-Harrison reaction scheme, Nonlinear Anal. Real World Appl., 2017, 33, 284-297. · Zbl 1350.35022
[6] Z. J. Du, X. N. Zhang and H. P. Zhu, Dynamics of nonconstant steady states of the Sel’kov model with saturation effect, J. Nonlinear Sci., 2020, 30(4), 1553-1577. · Zbl 1443.35076
[7] R. Engelhardt, Modeling Pattern Formation in Reaction Diffusion Systems, Denmark, Department of Chemistry Laboratory III, H. C. Orsted Institute University of Copenhagen, 1994.
[8] A. B. Finlayson and J. H. Merkin, Creation of spatial structure by an electric field applied to an ionic cubic autocatalator system, J. Engrg. Math., 2000, 38, 279-296. · Zbl 0948.92026
[9] S. M. Fu, X. He, L. N. Zhang, et al., Turing patterns and spatiotemporal pat-terns in a tritrophic food chain model with diffusion, Nonlinear Anal. Real World Appl., 2021, 59, 103260. · Zbl 1466.92224
[10] X. Y. Gao, S. D. Ishag, S. M. Fu, et al., Bifurcation and Turing pattern forma-tion in a diffusive ratio-dependent predator-prey model with predator harvesting, Nonlinear Anal. Real World Appl., 2020, 51, 102962. · Zbl 1430.35020
[11] G. H. Guo, B. F. Li, M. H. Wei, et al., Hopf bifurcation and steady-state bifurcation for an autocatalysis reaction-diffusion model, J. Math. Anal. Appl., 2012, 391(1), 265-277. · Zbl 1246.35032
[12] G. H. Guo, L. Liu, B. F. Li, et al., Qualitative analysis on positive steady-state solutions for an autocatalysis model with high order, Nonlinear Anal. Real World Appl., 2018, 41, 665-691. · Zbl 1393.35013
[13] G. H. Guo, X. N. Wang, X. L. Lin, et al., Steady-state and Hopf bifurcations in the Langford ODE and PDE systems, Nonlinear Anal. Real World Appl., 2017, 34, 343-362. · Zbl 1368.35029
[14] G. H. Guo, J. H. Wu and X. H. Ren, Hopf bifurcation in general Brusselator system with diffusion, Appl. Math. Mech., 2011, 32(9), 1177-1186. · Zbl 1237.35092
[15] A. Hunding and R. Engelhardt, Early biological morphogenesis and nonlinear dynamics, J. Theoret. Biol., 1995, 173, 401-413.
[16] A. Hunding and P. G. Sorensen, Size adaptation of Turing prepatterns, J. Math. Biol., 1988, 26, 27-39. · Zbl 0631.92003
[17] Y. F. Jia, Y. Li and J. H. Wu, Qualitative analysis on positive steady-states for an autocatalytic reaction model in thermodynamics, Discrete Contin. Dyn. Syst., 2017, 37(9), 4785-4813. · Zbl 1371.35084
[18] S. B. Li, J. H. Wu and Y. Y. Dong, Turing patterns in a reaction-diffusion model with the Degn-Harrison reaction scheme, J. Differential Equations, 2015, 259(5), 1990-2029. · Zbl 1323.35087
[19] S. B. Li, J. H. Wu and H. Nie, Steady-state bifurcation and Hopf bifurcation for diffusive Leslie-Gower predator-prey model, Comput. Math. Appl., 2015, 70(12), 3043-3056. · Zbl 1443.92157
[20] G. M. Lieberman, Bounds for the steady-state Sel’kov model for arbitrary p in any number of dimensions, SIAM J. Math. Anal., 2005, 36(5), 1400-1406. · Zbl 1112.35062
[21] H. X. Liu, R. C. Wu and B. Liu, Coexistence of activator and inhibitor for Brusselator diffusion system in chemical or biochemical reactions, J. Nonlinear Model. Anal., 2022, 4(3), 539-561.
[22] Y. Lou and W. M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differen-tial Equations, 1996, 131(1), 79-131. · Zbl 0867.35032
[23] M. J. Ma and J. J. Hu, Bifurcation and stability analysis of steady states to a Brusselator model, Appl. Math. Comput., 2014, 236, 580-592. · Zbl 1334.37047
[24] D. Mansouri, S. Abdelmalek and S. Bendoukha, Bifurcations and pattern for-mation in a generalized Lengyel-Epstein reaction-diffusion model, Chaos Soli-tons Fractals, 2020, 132, 109579. · Zbl 1434.35004
[25] K. Morimoto, Construction of multi-peak solutions to the Gierer-Meinhardt system with saturation and source term, Nonlinear Anal., 2009, 71, 2532-2557. · Zbl 1178.35040
[26] J. D. Murray, Mathematical Biology, Springer-Verlag, Berlin, 1993. · Zbl 0779.92001
[27] A. K. M. Nazimuddin, M. Humayun Kabir and M. Osman Gani, Spiral patterns and numerical bifurcation analysis in a three-component Brusselator model for chemical reactions, Math. Comput. Simulation, 2023, 203, 577-591. · Zbl 1540.35243
[28] Y. Nishiura, Global structure of bifurcating solutions of some reaction-diffusion systems, SIAM J. Math. Anal., 1982, 13(4), 555-593. · Zbl 0501.35010
[29] R. Peng, J. P. Shi and M. X. Wang, On stationary patterns of a reaction-diffusion model with autocatalysis and saturation law, Nonlinearity, 2008, 21(7), 1471-1488. · Zbl 1148.35094
[30] V. Petrov, S. K. Scott and K. Showalter, Excitability, Wave Reflection, and Wave Splitting in a cubic Autocatalysis Reaction-Diffusion System, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 1994.
[31] P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 1971, 7(3), 487-513. · Zbl 0212.16504
[32] J. P. Shi, Persistence and bifurcation of degenerate solutions, J. Funct. Anal., 1999, 169(2), 494-531. · Zbl 0949.47050
[33] Q. N. Song, R. Z Yang, C. R. Zhang, et al.,Bifurcation analysis of a diffu-sive perdator-pery model with beddington-deangelis functional response, J. Appl. Anal. Comput., 2021, 11(2), 920-936. · Zbl 07905155
[34] J. I. Steinfeld, J. S. Francisco and W. L. Hase, Chemical Kinetics and Dynam-ics, Prentice-Hall, 1999.
[35] I. Takagi, Point-condensation for a reaction-diffusion system, J. Differential Equations, 1986, 61(2), 208-249. · Zbl 0627.35049
[36] P. Wang and Y. B. Gao, Turing instability of the periodic solutions for the dif-fusive Sel’kov model with saturation effect, Nonlinear Anal. Real World Appl., 2022, 63, 103417. · Zbl 1479.35073
[37] X. P. Yan, J. Y. Chen and C. H. Zhang, Dynamics analysis of a chemical reaction-diffusion model subject to Degn-Harrison reaction scheme, Nonlinear Anal. Real World Appl., 2019, 48, 161-181. · Zbl 1428.35634
[38] X. Yan, Y. L. Li and G. H. Guo, Qualitative analysis on a diffusive predator-prey model with toxins, J. Math. Anal. Appl., 2020, 486(10), 123868. · Zbl 1436.35231
[39] X. P. Yan and C. H. Zhang, Turing instability and formation of temporal pat-terns in a diffusive bimolecular model with saturation law, Nonlinear Anal. Real World Appl., 2018, 43, 54-77. · Zbl 1394.35036
[40] W. B. Yang, Z. Y. Wei, H. L. Jianget, et al., The existence of steady states for a bimolecular model with autocatalysis and saturation law, Z. Angew. Math. Phys., 2018, 69(5), 131. · Zbl 1401.35191
[41] F. Q. Yi, Turing instability of the periodic solutions for reaction-diffusion sys-tems with cross-diffusion and the patch model with cross-diffusion-like coupling, J. Differential Equations, 2021, 281(25), 379-410. · Zbl 1472.35036
[42] F. Q. Yi, J. X. Liu and J. J. Wei, Spatiotemporal pattern formation and multiple bifurcations in a diffusive bimolecular model, Nonlinear Anal. Real World Appl., 2010, 11(5), 3770-3781. · Zbl 1203.35037
[43] F. Q. Yi, J. J. Wei and J. P. Shi, Diffusion-driven instability and bifurcation in the Lengyel-Epstein system, Nonlinear Anal. Real World Appl., 2008, 9(3), 1038-1051. · Zbl 1146.35384
[44] L. Zhang and S. Y. Liu, Stability and pattern formation in a coupled arbitrary order of autocatalysis system, Appl. Math. Model., 2009, 33(2), 884-896. · Zbl 1168.35385
[45] J. T. Zhao and Y. F. Jia, Stability analysis on steady-state bifurcation for arbitrary order autocatalytic reaction model, Appl. Math. Lett., 2019, 95, 98-103. · Zbl 1423.35028
[46] J. Zhou and J. P. Shi, Pattern formation in a genernal glycolysis reaction-diffusion system, IMA J. Appl. Math., 2015, 80(6), 1703-1738. · Zbl 1338.35445
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.