×

Nonlinear optics: physics, analysis, and numerics. Abstracts from the workshop held March 10–15, 2024. (English) Zbl 07921247

Summary: When high-intensity electromagnetic waves at optical frequencies interact with solids and/or nanostructures the materials’ response cannot anymore be described via simple linear relations. The resulting science of nonlinear optics has recently witnessed exiting developments that have brought to the fore numerous mathematical challenges that need to be addressed in order to fully exploit the opportunities that result from these developments. The mathematical modeling involves a system of partial differential equations where the Maxwell equations are coupled to evolution equations of the materials and their response to electromagnetic fields. Typically, the full coupled systems are quite complicated or even intractable so that the derivation, the analysis, and the numerical treatment of simplified effective models is often indispensable. In turn, this requires the close cooperation between researchers from theoretical physics and analysis/numerics in order to push forward the field on nonlinear optics.

MSC:

78-06 Proceedings, conferences, collections, etc. pertaining to optics and electromagnetic theory
00B05 Collections of abstracts of lectures
00B25 Proceedings of conferences of miscellaneous specific interest
78Axx General topics in optics and electromagnetic theory

References:

[1] A. Ankiewicz, D. J. Kedziora, A. Chowdury, U. Bandelow, and N. Akhmediev. Infinite hier-archy of nonlinear Schrödinger equations and their solutions. Phys. Rev. E, 93:012206, 2016.
[2] U. Bandelow, A. Ankiewicz, Sh. Amiranashvili, and N. Akhmediev. Sasa-Satsuma hierarchy of integrable evolution equations. Chaos, 28(053108 1-11), 2018. · Zbl 1391.37047
[3] A. Ankiewicz, U. Bandelow, and N. Akhmediev. Generalized Sasa-Satsuma equation: Densi-ties approach to new infinite hierarchy of integrable evolution equations. Z. Naturforsch. A, 73(12):1121-112, 2018.
[4] U. Bandelow and N. Akhmediev. Solitons on a background, rogue waves, and classical soliton solutions of Sasa-Satsuma equation. Journal of Optics, 15(6):064006/1-064006/10, 2013.
[5] U. Bandelow and N. Akhmediev. Persistence of rogue waves in extended nonlinear Schrödinger equations: integrable Sasa-Satsuma case. Phys. Lett. A, 376(18):1558-1561, 2012. · Zbl 1260.35195
[6] U. Bandelow and N. Akhmediev. Sasa-Satsuma equation: Soliton on a background and its limiting cases. Phys. Rev. E, 86:026606, 2012. References
[7] W. Bao, Y. Cai and Y. Feng, Improved uniform error bounds of the time-splitting methods for the long-time (nonlinear) Schrödinger equation, Math. Comp., Vol. 92 (2023), pp. 1109-1139. · Zbl 1508.35103
[8] W. Bao, Y. Feng and J. Yin, Improved uniform error bounds on time-splitting methods for the long-time dynamics of the Dirac equation with small potentials, Multiscale Modeling and Simulation: a SIAM Interdisciplinary Journal, Vol. 20 (2022), pp. 1040-1062. · Zbl 1498.35458
[9] W. Bao, Y. Cai and Y. Feng, Improved uniform error bounds on time-splitting methods for the long-time dynamics of the weakly nonlinear Dirac equation, IMA J. Numer. Anal., to appear (arXiv: 2203.05886).
[10] W. Bao, Y. Cai and Y. Feng, Improved uniform error bounds on time-splitting methods for long-time dynamics of the nonlinear Klein-Gordon equation with weak nonlinearity, SIAM J. Numer. Anal., Vol. 60 (2022), pp. 1962-1984. · Zbl 07572363
[11] W. Bao, Y. Feng and W. Yi, Long time error analysis of finite difference time domain meth-ods for the nonlinear Klein-Gordon equation with weak nonlinearity, Commun. Comput. Phys., Vol. 26 (2019), pp. 1307-1334. · Zbl 1518.65082
[12] W. Bao, Y. Feng and C. Su, Uniform error bounds of a time-splitting spectral method for the long-time dynamics of the nonlinear Klein-Gordon equation with weak nonlinearity, Math. Comp., Vol. 91 (2022), pp. 811-842. References · Zbl 07473345
[13] C. Döding. Localized orthogonal decomposition methods vs. classical FEM for the Gross-Pitaevskii equation. ArXiv e-print 2403.11268, 2024.
[14] C. Döding, P. Henning, and J. Wärnegård. A two level approach for simulating Bose-Einstein condensates by localized orthogonal decomposition. ArXiv e-print 2212.07392, 2022.
[15] P. Henning and J. Wärnegård. Superconvergence of time invariants for the Gross-Pitaevskii equation. Math. Comp., 91(334):509-555, 2022. · Zbl 1483.35213
[16] O. Karakashian and C. Makridakis. A space-time finite element method for the nonlinear Schrödinger equation: the continuous Galerkin method. SIAM J. Numer. Anal., 36(6):1779-1807, 1999. · Zbl 0934.65110
[17] A. Målqvist and D. Peterseim. Localization of elliptic multiscale problems. Math. Comp., 83(290):2583-2603, 2014. · Zbl 1301.65123
[18] C. Sulem and P.-L. Sulem. The nonlinear Schrödinger equation, volume 139 of Applied Mathematical Sciences. Springer-Verlag, New York, 1999. Self-focusing and wave collapse. References · Zbl 0928.35157
[19] B. Dörich and K. Zerulla, Wellposedness and regularity for linear Maxwell equations with surface current, Z. Angew. Math. Phys., 74(4):131, 2023. · Zbl 1515.35266
[20] J. Dörner, Discontinuous Galerkin Discretization for Maxwell Equations with Inhomoge-neous Interface Conditions, Master’s thesis, Karlsruhe Institute of Technology (2023).
[21] J. S. Hesthaven, T. Warburton, Nodal High-Order Methods on Unstructured Grids: I. Time-Domain Solution of Maxwell’s Equations. J. Comput. Phys 181 (2002): 186-221. References · Zbl 1014.78016
[22] C. Carle. On leapfrog-Chebyshev schemes for second-order differential equations. PhD thesis, Karlsruhe Institute of Technology (KIT), 2021.
[23] C. Carle and M. Hochbruck. Error Analysis of Multirate Leapfrog-Type Methods for Second-Order Semilinear Odes. SIAM J. Numer. Anal., vol. 60, no. 5, pp. 2897-2924, Oct. 2022. · Zbl 1506.65096
[24] C. Carle and M. Hochbruck. Error analysis of second-order locally implicit and local time-stepping methods for linear wave equations. Math. Comp., electronically published on April 1, 2024. References
[25] C.M. Bender and S. Boettcher, “Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry”, Phys. Rev. Lett. 80, 5243 (1998) · Zbl 0947.81018
[26] C. Rüter, K. Makris, R. El-Ganainy, D.N. Christodoulides, M. Segev, and D. Kip, “Obser-vation of parity-time symmetry in optics”, Nature Phys. 6, 192-195 (2010)
[27] T. Kato, “Perturbation Theory for Linear Operators”, Springer (1966) · Zbl 0148.12601
[28] J. Wiersig, “Review of exceptional point-based sensors”, Photonics Res. 8, 1457 (2020)
[29] Q. Zhong, J. Ren, M. Khajavikhan, D.N. Christodoulides, S ¸.K. Özdemir, and R. El-Ganainy, “Sensing with exceptional surfaces in order to combine sensitivity with robustness”, Phys. Rev. Lett. 122, 153902 (2019)
[30] J. Kullig, D. Grom, S. Klembt, and J. Wiersig, “Higher-order exceptional points in waveguide-coupled microcavities: perturbation induced frequency splitting and mode pat-terns”, Photonics Res. 11, A54-A64 (2023)
[31] J. Wiersig, “Response strengths of open systems at exceptional points”, Phys. Rev. Research 4, 023121 (2022)
[32] J. Wiersig, “Petermann factors and phase rigidities near exceptional points”, Phys. Rev. Re-search 5, 033042 (2023) References
[33] Baumstark, J., Jahnke, T. and Lubich, C., 2024. Polarized high-frequency wave propagation beyond the nonlinear Schrödinger approximation. SIAM J. Math. Anal., 56(1), pp.454-473. References
[34] R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, S. Rotter and D. N. Christodoulides, “Non-Hermitian physics and PT symmetry”, Nat. Phys. 14, 11 (2018).
[35] S. Xia, D. Kaltsas, D. Song, I. Komis, J. Xu, A. Szameit, H. Buljan, K.G. Makris, and Z. Chen, “Nonlinear tuning of PT symmetry and non-Hermitian topological states”, Science 372 72 (2021).
[36] I. Komis, D. Kaltsas, S. Xia, H. Buljan, Z. Chen, and K.G. Makris, “Robustness versus sensitivity in non-Hermitian topological lattices probed by pseudospectra”, Phys. Rev. Res. 4, 043219 (2022).
[37] I. Komis, Z. H. Musslimani and K. G.Makris, Opt. Lett., 48, 6528 (2023).
[38] K.G. Makris, L. Ge, and H.E. Türeci, “Anomalous transient amplification of waves in non-normal photonic media” Phys. Rev. X. 4, 041044. (2014).
[39] K. G. Makris, “Transient growth and dissipative exceptional points”, Phys Rev. E 104, 054218 (2021).
[40] K. G. Makris, “Transient amplification due to non-Hermitian interference of dissipative supermodes”, Appl. Phys Lett., to appear (2024). References
[41] A. Boardman. Electromagnetic surface modes. John Wiley & Sons, 1972.
[42] E. Centeno and A. Moreau. Effective properties of superstructured hyperbolic metama-terials: How to beat the diffraction limit at large focal distance. Physical Review B, 92(4):045404, 2015.
[43] K. Hiremath, L. Zschiedrich, and F. Schmidt. Numerical solution of nonlocal hydrodynamic Drude model for arbritrary shaped nano-plasmonic structures using Nedelec finite elements. J. Comput. Phys., 231:5890-5896, 2012.
[44] Y. Huang, J. Li, and W. Yang. Theoretical and numerical analysis of a non-local disper-sion model for light interaction with metallic nanostructures. Comput. Math. with App., 72(4):921-932, 2016. · Zbl 1359.78016
[45] S. Maier. Plasmonics -Fundamentals and applications. Springer, 2007.
[46] A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith. Controlled-reflectance surfaces with film-coupled colloidal nanoantennas. Na-ture, 492(7427):86-89, 2012.
[47] E. E. Narimanov and V. M. Shalaev. Optics: beyond diffraction. Nature, 447:266-267, 2007.
[48] S. Nicaise. Stabilization and asymptotic behavior of dispersive medium models. Systems Control Lett., 61(5):638-648, 2012. · Zbl 1250.93109
[49] N. Schmitt, C. Scheid, S. Lanteri, J. Viquerat, and A. Moreau. A DGTD method for the numerical modeling of the interaction of light with nanometer scale metallic structures taking into account non-local dispersion effects. J. Comput. Phys., 316:396-415, 2016. · Zbl 1349.65481
[50] N. Schmitt, C. Scheid, J. Viquerat, and S. Lanteri. Simulation of three-dimensional nanoscale light interaction with spatially dispersive metals using a high order curvilinear dgtd method. J. Comput. Phys., 373:210-229, 2018. · Zbl 1416.65358
[51] D. R. Smith, A. Moreau, C. Ciraci, and J. J. Mock. Apparatus and method for providing a selectively absorbing structure, Apr. 16 2013. US Patent App. 14/394,774. References
[52] J. H. Eberly, and K.C. Kulander, “Atomic Stabilization by Super-Intense Lasers,” Science 262, 1229 (1993).
[53] U. Eichmann et al., “Acceleration of neutral atoms in strong short-pulse laser fields,” Nature 461, 1261 (2009).
[54] W. C. Henneberger, “Perturbation Method for Atoms in Intense Light Beams,” Phys. Rev. Lett. 21, 838 (1968).
[55] A. Couairon, and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Reports 441, 47 (2007).
[56] M. Richter et al., “The role of the Kramers-Henneberger atom in the higher-order Kerr effect,” New J. Phys. 15, 083012, (2013).
[57] T. Bredtmann et al., “XUV lasing during strong-field-assisted transient absorption in molecules,” Phys. Rev. A 93, 021402 (2016).
[58] U. Eichmann et al., “Observing Rydberg Atoms to Survive Intense Laser Fields,” Phys. Rev. Lett. 110, 203002 (2013).
[59] M. Matthews et al., “Amplification of intense light fields by nearly free electrons,” Nat. Phys. 14, 695 (2018).
[60] M. Richter et al., “Simulation of spatiotemporal light dynamics based on the time-dependent Schrödinger equation,” Opt. Express 31, 39941-39952 (2023).
[61] F. Morales et al., “Propagator operator for pulse propagation in resonant media,” Opt. Express 29, 29128-29137 (2021). References
[62] Lanteri, S. and Scheid, C. and Viquerat, J.,Analysis of a generalized dispersive model cou-pled to a DGTD method with application to nanophotonics, SIAM Journal of Scientific Computing, 39, 3 (2017), A831-A859 · Zbl 1368.78140
[63] Lanteri, S. and Scheid, C., Convergence of a Discontinuous Galerkin scheme for the mixed time domain Maxwell’s equations in dispersive media, IMA Journal of Numerical Analysis, 33(2) (2012), 432-459 · Zbl 1277.78035
[64] Léger, R. and Viquerat, J. and Durochat, C. and Scheid, C. and Lanteri, S., A parallel non-confoming multi-element DGTD method for the simulation of electromagnetic wave interaction with metallic nanoparticles, Journal of Computational and Applied Mathemat-ics,270 (2014), 330-342 · Zbl 1374.78205
[65] Viquerat, J. and Scheid, C., A 3D curvilinear Discontinuous Galerkin time-domain method for nanoscale light-matter interactions, Journal of Computational and Applied Mathemat-ics, 289 (2015), 37-50 · Zbl 1320.78018
[66] Viquerat, J. and Schmitt, N. and Scheid, C., Simulating 3D periodic structures at oblique incidences with discontinuous Galerkin time-domain methods: theoretical and practical con-siderations, SMAI Journal of Computational Mathematics, textbf5 (2019) 131-159 · Zbl 1435.78021
[67] Pitelet, A. and Schmitt, N. and Loukresis, D. and Scheid, C. and Gersem, H. De and Ciraci, C. and Centeno, E. and Moreau, A., Influence of spatial dispersion on surface plasmons and grating couplers, Journal of the Optical Society of America A, 36(11) (2019), 2989-2999
[68] Nicaise, S. and Scheid, C., textitStability and asymptotic properties of a linearized hydro-dynamic medium model for dispersive media in nanophotonic, Computers & Mathematics with Applications, 79(12) (2020), 3462-3494 · Zbl 1445.78012
[69] Nicaise, S. and Scheid, C., Stability properties for a problem of light scattering in a dispersive metallic domain, Evolution Equations and Control Theory, 12(1) (2023), 20-44 · Zbl 1504.35530
[70] C. Ciraci and J. B. Pendry and D. R. Smith, Hydrodynamic Model for Plasmonics: A Macroscopic Approach to a Microscopic Problem, ChemPhysChem, textbf14 (2013), 1109
[71] S.Nicaise, Stabilization and asymptotic behavior of dispersive medium models, Systems Con-trol Lett., textbf61(5) (2012), 638-648 References · Zbl 1250.93109
[72] Rauch, Jeffrey. Hyperbolic partial differential equations and geometric optics. Graduate Studies in Mathematics 133. Providence, RI: American Mathematical Society (AMS) (ISBN 978-0-8218-7291-8/hbk). xix, 363 p. (2012). · Zbl 1252.35004
[73] Schneider, Guido; Uecker, Hannes. The mathematics of light pulses in dispersive media. Jahresber. Dtsch. Math.-Ver. 109, No. 3, 139-161 (2007). · Zbl 1204.35002
[74] Dörfler, Willy; Lechleiter, Armin; Plum, Michael; Schneider, Guido; Wieners, Christian. Photonic crystals. Mathematical analysis and numerical approximation. Oberwolfach Semi-nars 42. Berlin: Springer (ISBN 978-3-0348-0112-6/pbk; 978-3-0348-0113-3/ebook). viii, 162 p. (2011). · Zbl 1238.78001
[75] Busch, Kurt; Schneider, Guido; Tkeshelashvili, Lasha; Uecker, Hannes. Justification of the nonlinear Schrödinger equation in spatially periodic media. Z. Angew. Math. Phys. 57, No. 6, 905-939 (2006). · Zbl 1109.35104
[76] Fukuizumi, Reika; Schneider, Guido. Interchanging space and time in nonlinear optics mod-eling and dispersion management models. J. Nonlinear Sci. 32, No. 3, Paper No. 29, 39 p. (2022). · Zbl 1487.78023
[77] Groves, M. D.; Schneider, G. Modulating pulse solutions for a class of nonlinear wave equations. Commun. Math. Phys. 219, No. 3, 489-522 (2001). · Zbl 0981.35041
[78] Dohnal, Tomas; Pelinovsky, Dmitry E.; Schneider, Guido. Traveling modulating pulse solutions with small tails for a nonlinear wave equation in periodic media. Preprint, arXiv:2304.06214, Nonlinearity accepted 03/24. References
[79] Ignas Lukosiunas, Lina Grineviciute, Julianija Nikitina, Darius Gailevicius, and Kestutis Staliunas, Extremely Narrow, Sharp-Peaked Resonances at the Edge of the Continuum, Phys. Rev. A , 107 , L061501 (2023).
[80] Lina Grineviciute, Julijana Nikitina, Ceren Babayigit, and Kestutis Staliunas, Fano-like resonances in nanostructured thin films for spatial filtering, Appl. Phys. Lett., 118,131114 (2021). References
[81] A. Abdulle, W. E, B. Engquist, E. Vanden-Eijnden, The heterogeneous multiscale method, Acta Numer. 21 (2012), 1-87. · Zbl 1255.65224
[82] A. Målqvist, D. Peterseim, Numerical Homogenization by Localized Orthogonal Decomposi-tion, SIAM Spotlights (2021). · Zbl 1479.65001
[83] R. Maier, B. Verfürth, Multiscale scattering in nonlinear Kerr-type media, Math. Comp. 91 (2022), 1655-1685. Reporter: Álvaro Rodríguez Echarri · Zbl 1491.65148
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.