×

Categorical idempotents via shifted 0-affine algebras. (English) Zbl 07920890

Summary: We show that a categorical action of shifted 0-affine algebra naturally gives two families of pairs of complementary idempotents in the triangulated monoidal category of triangulated endofunctors for each weight category. Consequently, we obtain two families of pairs of complementary idempotents in the triangulated monoidal category \(\mathrm{D}^b \mathrm{Coh}(G/P \times G/P)\). As an application, this provides examples where the projection functors of a semiorthogonal decomposition are kernel functors, and we determine the generators of the component categories in the Grassmannians case.

MSC:

14M15 Grassmannians, Schubert varieties, flag manifolds
18N25 Categorification
20C08 Hecke algebras and their representations
18F30 Grothendieck groups (category-theoretic aspects)
18G80 Derived categories, triangulated categories

References:

[1] Abel, M., Hogancamp, M.: Categorified Young symmetrizers and stable homology of torus links II. Selecta Math. (N.S.) 23.3, 1739-1801 (2017) · Zbl 1456.57013
[2] Anno, R.; Logvinenko, T., Spherical DG-functors, J. Eur. Math. Soc., 19, 9, 2577-2656, 2016 · Zbl 1374.14015 · doi:10.4171/jems/724
[3] Arkiphov, S., Kanstrup, T.: Demazure descent and representation of reductive groups. Algebra, Vol. (2014)
[4] Arkiphov, S.; Kanstrup, T., Quasi-coherent Hecke category and Demazure descent, Mosc. Math. J., 15, 2, 257-267, 2015 · Zbl 1348.14042 · doi:10.17323/1609-4514-2015-15-2-257-267
[5] Arkhipov, S., Mazin, M.: Equivariant K-theory of the space of partial flags. arXiv:2205.05184v1
[6] Beilinson, AA, Coherent sheaves on \(\mathbb{P}^n\) and problems of linear algebra, Functional Analysis and Its Applications, 12, 3, 68-69, 1978 · doi:10.1007/BF01681436
[7] Bergh, D.; Schnurer, OM, Conservative descent for semi-orthogonal decompositions, Adv. Math., 360, 106882-39, 2020 · Zbl 1453.14048 · doi:10.1016/j.aim.2019.106882
[8] Bernstein, IN; Gel’fand, IM; Gel’fand, SI, Schubert cells and cohomology of the spaces G/P, Russian Math. Surveys, 28, 3, 1-26, 1973 · Zbl 0289.57024 · doi:10.1070/RM1973v028n03ABEH001557
[9] Beilinson, AA; Lusztig, G.; MacPherson, R., A geometric setting for the quantum deformation of \(\text{GL}_n \), Duke Math. J., 61, 655-677, 1990 · Zbl 0713.17012 · doi:10.1215/S0012-7094-90-06124-1
[10] Ben-Zvi, D., Nadler, D.: Beilinson-Bernstein localization over the Harish-Chandra center, arXiv:1209.0188v2
[11] Bondal, A., Representations of associative algebras and coherent sheaves, Izv. Akad. Nauk SSSR Ser. Mat., 53, 1, 25-44, 1989
[12] Boyarchenko, M.; Drinfeld, V., Character sheaves on unipotent groups in positive characteristic: fundations, Selecta Math., 20, 1, 125-235, 2014 · Zbl 1334.20040 · doi:10.1007/s00029-013-0133-7
[13] Chuang, J.; Rouquier, R., Derived equivalences for symmetric groups and \(\mathfrak{sl}_2\)-categorification, Ann. Math., 167, 1, 245-298, 2008 · Zbl 1144.20001 · doi:10.4007/annals.2008.167.245
[14] Demazure, M., Invariants sym’etriques entiers des groupes de Weyl et torsion, Invent. Math., 21, 287-301, 1973 · Zbl 0269.22010 · doi:10.1007/BF01418790
[15] Demazure, M., Désingularisation des variétés de Schubert généralisées, Ann. Sci. École Norm. Sup., 7, 53-88, 1974 · Zbl 0312.14009 · doi:10.24033/asens.1261
[16] Elias, B., Hogancamp, M.: Categorical diagonalization, arXiv:1707.04349v1, 2017
[17] Elias, B., Hogancamp, M.: Categorical diagonalization of full twists, 2018. arXiv: 1801.00191
[18] Fulton, W.; Harris, J., Representation Theory, 2004, A First Course: Springer-Verlag, New York, A First Course · doi:10.1007/978-1-4612-0979-9
[19] Hsu, Y.H.: A categorical action of the shifted \(q=0\) affine algebra, arXiv:2009.03579 [math.RT]
[20] Huybrechts, D.: Fourier-Mukai transforms in Algebraic Geometry, Oxford University Press (2006) · Zbl 1095.14002
[21] Hogancamp, M.: Idempotents in triangulated monoidal cateogries, arXiv:1703.01001v1 (2017)
[22] Hogancamp, M., Categorified Young symmetrizers and stable homology of torus links, Geom. Topol., 22, 5, 2943-3002, 2018 · Zbl 1423.57028 · doi:10.2140/gt.2018.22.2943
[23] Hogancamp, M.: Constructing categorical idempotents, arXiv:2002.08905v2
[24] Kamnitzer, J.: Categorification of Lie algebras [d’aprés Rouquier, Khovanov-Lauda, ...], Séminaire BOURBAKI, 65éme année, 2012-2013, no 1072
[25] Kapranov, M.M.: On the derived categories of coherent sheaves on Grassman manifolds, Izv. Akad. Nauk SSSR Ser. Mat. 48 (1984), 192-202; English translation in Math. USSR Izv. 24 (1985) · Zbl 0564.14023
[26] Kapranov, MM, On the derived categories of coherent sheaves on some homogeneous spaces, Invent. Math., 92, 3, 479-508, 1988 · Zbl 0651.18008 · doi:10.1007/BF01393744
[27] Khovanov, M.; Lauda, A., A diagrammatic approach to categorification of quantum groups I, Represent. Theory., 13, 309-347, 2009 · Zbl 1188.81117 · doi:10.1090/S1088-4165-09-00346-X
[28] Kuznetsov, A., Base change for semiorthogonal decompositions, Compos. Math., 147, 3, 852-876, 2011 · Zbl 1218.18009 · doi:10.1112/S0010437X10005166
[29] Kuznetsov, A.: Hochschild homology and semiorthogonal decompositions, arXiv:0904.4330v1
[30] Kuznetsov, A.: Semiorthogonal decompositions in algebraic geometry, Proceedings of the International Congress of Mathematicians-Seoul 2014. Vol. II, Kyung Moon Sa, Seoul, pp. 635-660 (2014) · Zbl 1373.18009
[31] Lusztig, G., Introduction to quantum groups, 1993, Boston: Birkhauser, Boston · Zbl 0788.17010
[32] Nakajima, H., Quiver varieties and finite-dimensional representations of quantum affine algebras, J. Amer. Math. Soc., 14, 1, 145-238, 2001 · Zbl 0981.17016 · doi:10.1090/S0894-0347-00-00353-2
[33] Rouquier, R.: 2-Kac-Moody algebras, arXiv:0812.5023 [math.RT]
[34] Vasserot, E., Affine quantum groups and equivariant K-theory, Transformation Groups, 3, 3, 269-299, 1998 · Zbl 0969.17009 · doi:10.1007/BF01236876
[35] Weyman, J.: Cohomology of vector bundles and Syzygies, Cambridge University press (2003) · Zbl 1075.13007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.