×

Waves in a random medium: endpoint Strichartz estimates and number estimates. (English) Zbl 07920802

Correggi, Michele (ed.) et al., Quantum mathematics I. Contributions based on the presentations at the INdAM quantum meetings, IQM22, Milan, Italy, spring 2022. Singapore: Springer. Springer INdAM Ser. 57, 3-87 (2023).
Summary: In this article we reconsider the problem of the propagation of waves in a random medium in a kinetic regime. The final aim of this program would be the understanding of the conditions which allow to derive a kinetic or radiative transfer equation. Although it is not reached for the moment, accurate and somehow surprising number estimates in the Fock space setting, which happen to be propagated by the dynamics on macroscopic time scales, are obtained. Keel and Tao endpoint Strichartz estimates play a crucial role after being combined with a Cauchy-Kowalevski type argument. Although the whole article is focussed on the simplest case of Schrödinger waves in a gaussian random potential of which the translation into a QFT problem is straightforward, several intermediate results are written in a general setting in order to be applied to other similar problems.
For the entire collection see [Zbl 1531.81008].

MSC:

81-XX Quantum theory

References:

[1] Ammari, Z.; Nier, F., Mean field propagation of Wigner measures and BBGKY hierarchies of general bosonic states, J. Math. Pures Appl., 9, 6, 585-626, 2011 · Zbl 1251.81062 · doi:10.1016/j.matpur.2010.12.004
[2] Ammari, Z., Nier, F.: Mean field propagation of infinite-dimensional Wigner measures with a singular two-body interaction potential. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 5(14), 155-220 (2015) · Zbl 1341.81037
[3] Bal, G., On the self-averaging of wave energy in random media, Multiscale Model. Simul., 2, 3, 398-420, 2004 · Zbl 1072.35505 · doi:10.1137/S1540345903426298
[4] Brascamp, HJ; Lieb, E., Best constants in Young fs inequality, its converse and its generalization to more than three functions, Adv. Math., 20, 151-173, 1976 · Zbl 0339.26020 · doi:10.1016/0001-8708(76)90184-5
[5] Breteaux, S., A geometric derivation of the Boltzmann equation for a particle interacting with a Gaussian random field, using a Fock space approach, Ann. Inst. Fourier, 64, 3, 1031-1076, 2014 · Zbl 1315.82015 · doi:10.5802/aif.2873
[6] Colin de Verdière, Y.: Ergodicité et fonctions propres du Laplacien. Commun. Math. Phys. 102, 497-502 (1985) · Zbl 0592.58050
[7] Duerinckx, M.; Shirley, C., A new spectral analysis of stationnary random Schrödinger operators, J. Math. Phys., 62, 2021 · Zbl 1472.81092 · doi:10.1063/5.0033583
[8] Erdös, L.; Yau, HT, Linear Boltzmann equation as a weak coupling limit of random Schrödinger equation, Commun. Pure Appl. Math., 53, 6, 667-735, 2000 · Zbl 1028.82010 · doi:10.1002/(SICI)1097-0312(200006)53:6<667::AID-CPA1>3.0.CO;2-5
[9] Erdös, L.; Yau, HT; Salmhofer, M., Quantum diffusion of the random Schrödinger evolution in the scaling limit, Acta Math., 200, 2, 211-277, 2008 · Zbl 1155.82015 · doi:10.1007/s11511-008-0027-2
[10] Erdös, L.; Yau, HT; Salmhofer, M., Quantum diffusion of the random Schrödinger evolution in the scaling limit II, Commun. Math. Phys., 271, 1, 1-53, 2007 · Zbl 1205.82123 · doi:10.1007/s00220-006-0158-2
[11] Fouque, J.P., Garnier, J., Papanicolaou, G., Solna, K.: Wave Propagation and Time Reversal in Randomly Layered Media. Stochastic Modelling and Applied Probability, vol. 56. Springer, Berlin (2007) · Zbl 1386.74001
[12] Gallavotti, G.: Rigorous theory of the Boltzmann equation in the Lorentz model. Nota internan no. 358. Physics department “la Sapienza”, Roma (1972), available on mparc@math.utexas.edu# 93-304
[13] Garnier, J.: Multiscale analysis of wave propagagation in random media. In: Proceedings of the International Congress of Mathematicians 2018 Rio de Janeiro, vol. 3, pp. 2865-2890 (2018)
[14] Gérard, P.: Mesures semi-classiques et ondes de Bloch. In: Séeminaire sur les Équations aux Dérivées Partielles, 1990-1991, Exp. No. XVI, 19pp., École Polytech., Palaiseau (1991) · Zbl 0739.35096
[15] Gérard, P.; Markowich, PA; Mauser, NJ; Poupaud, F., Homogenization limits andWigner transforms, Commun. Pure Appl. Math., 50, 4, 323-379, 1997 · Zbl 0881.35099 · doi:10.1002/(SICI)1097-0312(199704)50:4<323::AID-CPA4>3.0.CO;2-C
[16] Helffer, B.; Martinez, A.; Robert, D., Ergodicité et limite semi-classique, Commun. Math. Phys., 109, 2, 313-326, 1987 · Zbl 0624.58039 · doi:10.1007/BF01215225
[17] Helffer, B., Sjöstrand, J.: Equation de Harper. Lecture Notes in Physics, vol. 345, pp. 118-197. Springer, Berlin (1989) · Zbl 0699.35189
[18] Hernandez, F.: Quantum diffusion via an approximate semigroup property (2022). arXiv:2206.12998v1
[19] Lions, PL; Paul, T., Sur les mesures de Wigner, Rev. Mat. Iberoamericana, 9, 3, 553-618, 1993 · Zbl 0801.35117 · doi:10.4171/RMI/143
[20] Janson, S.: Gaussian Hilbert Spaces. Cambridge Tracts in Mathematics, vol. 129. Cambridge University Press, Cambridge (1997) · Zbl 0887.60009
[21] Keel, M.; Tao, T., Endpoint Strichartz estimates, Am. J. Math., 120, 955-980, 1998 · Zbl 0922.35028 · doi:10.1353/ajm.1998.0039
[22] Lieb, E., Gaussian kernels have only gaussian maximizers, Invent. Math., 102, 179-208, 1990 · Zbl 0726.42005 · doi:10.1007/BF01233426
[23] Nirenberg, L., An abstract form of the nonlinear Cauchy-Kowalewski theorem J, Differ. Geom., 6, 561-576, 1972 · Zbl 0257.35001
[24] Papanicolaou, G.: Waves in one-dimensional random media. In: Ecole d’été de Probabilités de Saint-Flour. Lecture Notes in Mathematics, pp. 205-275. Springer, Berlin (1988)
[25] Peetre, J., Sur la transformation de Fourier à valeurs vectorielles, Rendiconti del Seminario Matematico della Università di Padova, 42, 15-26, 1969 · Zbl 0241.46033
[26] Ryzhik, L.; Papanicolaou, G.; Keller, JB, Transport equations for elastic and other waves in random media, Wave Motion, 24, 4, 327-370, 1996 · Zbl 0954.74533 · doi:10.1016/S0165-2125(96)00021-2
[27] Schnirelman, A., Ergodic properties of eigenfunctions, Uspehi Mat. Nauk., 29, 181-182, 1974 · Zbl 0324.58020
[28] Simon, B.: The \(P(\Phi )_2\) Euclidean (Quantum) Field Theory. Princeton Series in Physics, Princeton University Press, Princeton (1974) · Zbl 1175.81146
[29] Spohn, H., Derivation of the transport equation for electrons moving through random impurities, J. Stat. Phys., 17, 6, 385-412, 1977 · Zbl 0964.82508 · doi:10.1007/BF01014347
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.