×

A variant of the extragradient method for approximating solutions of pseudo-monotone quasi-variational inequalities. (English) Zbl 07920742

Summary: In this paper, we study a variant of the extragradient method for solving quasi-variational inequality problems in Hilbert spaces. In fact, we assume that the given operator is pseudo-monotone and Lipschitz continuous, and the given multivalued mapping is quasi-nonexpansive with nonempty, closed and convex values. Then by modifying the so-called extragradient method (an explicit discretization of a dynamical system) and using the Halpern’s regularization method, we show that the generated sequence is strongly convergent to a solution of the quasi-variational inequality problem, without any knowledge of the Lipschitz constant of the operator. Finally, we give some examples of applications and numerical experiments of our main result.

MSC:

47J20 Variational and other types of inequalities involving nonlinear operators (general)
58E35 Variational inequalities (global problems) in infinite-dimensional spaces
65K15 Numerical methods for variational inequalities and related problems
90C30 Nonlinear programming
Full Text: DOI

References:

[1] H. H. Bauschke and P. L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, Background, Springer, New York, 2011. doi: 10.1007/978-1-4419-9467-7_1. · Zbl 1218.47001 · doi:10.1007/978-1-4419-9467-7_1
[2] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation, Numerical Methods, Prentice Hall, New Jersey, 1989. · Zbl 0743.65107
[3] B. Djafari Rouhani and V. Mohebbi, Proximal point methods with possible unbounded errors for monotone operators in Hadamard spaces,, Optimization, A Journal of Mathematical Programming and Operations Research, 72 (2023), 2345-2366. doi: 10.1080/02331934.2022.2057854. · Zbl 1537.58003 · doi:10.1080/02331934.2022.2057854
[4] B. Djafari Rouhani and V. Mohebbi, Strong convergence of an inexact proximal point algorithm in a Banach space, J. Optim. Theory Appl., 186 (2020), 134-147. doi: 10.1007/s10957-020-01695-w. · Zbl 1521.47105 · doi:10.1007/s10957-020-01695-w
[5] S.-C. Fang, An iterative method for generalized complementarity problems, IEEE Transactions on Automatic Control, 25 (1980), 1225-1227. doi: 10.1109/TAC.1980.1102537. · Zbl 0483.49027 · doi:10.1109/TAC.1980.1102537
[6] D. V. Hieu, Y. J. Cho, Y.-b. Xiao and P. Kumam, Relaxed extragradient algorithm for solving pseudomonotone variational inequalities in Hilbert spaces, Optimization, 69 (2020), 2279-2304. doi: 10.1080/02331934.2019.1683554. · Zbl 1459.65096 · doi:10.1080/02331934.2019.1683554
[7] A. N. Iusem and B. F. Svaiter, A variant of Korpelevich’s method for variational inequalities with a new search strategy, Optimization, 42 (1997), 309-321. doi: 10.1080/02331939708844365. · Zbl 0891.90135 · doi:10.1080/02331939708844365
[8] S. Karamardian, Complementarity problems over cones with monotone and pseudomonotone maps,, J. Optim. Theory Appl., 18 (1976), 445-454. doi: 10.1007/BF00932654. · Zbl 0304.49026 · doi:10.1007/BF00932654
[9] G. M. Korpelevich, The extragradient method for finding saddle points and other problems, Ekonomika i Matematcheskie Metody, 12 (1976), 747-756. · Zbl 0342.90044
[10] P. E. Mainge and M. L. Gobinddass, Convergence of one-step projected gradient methods for variational inequalities,, J. Optim. Theory Appl., 171 (2016), 146-168. doi: 10.1007/s10957-016-0972-4. · Zbl 06661393 · doi:10.1007/s10957-016-0972-4
[11] Yu. Malitsky, Projected reflected gradient methods for monotone variational inequalities, SIAM J. Optim., 25 (2015), 502-520. doi: 10.1137/14097238X. · Zbl 1314.47099 · doi:10.1137/14097238X
[12] Yu. V. Malitsky and V. V. Semenov, An extragradient algorithm for monotone variational inequalities,, Cybernet. Systems Anal., 50 (2014), 271-277. doi: 10.1007/s10559-014-9614-8. · Zbl 1311.49024 · doi:10.1007/s10559-014-9614-8
[13] S. Saejung and P. Yotkaew, Approximation of zeros of inverse strongly monotone operators in Banach spaces, Nonlinear Analysis, 75 (2012), 742-750. doi: 10.1016/j.na.2011.09.005. · Zbl 1402.49011 · doi:10.1016/j.na.2011.09.005
[14] M. V. Solodov and P. Tseng, Modified projection-type methods for monotone variational inequalities,, SIAM J. Control Optim., 34 (1996), 1814-1830. doi: 10.1137/S0363012994268655. · Zbl 0866.49018 · doi:10.1137/S0363012994268655
[15] D. Sun, A projection and contraction method for the nonlinear complementarity problems and its extensions, Math. Numer. Sin., 16 (1994), 183-194. · Zbl 0900.65188
[16] P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM J Control Optim., 38 (2000), 431-446. doi: 10.1137/S0363012998338806. · Zbl 0997.90062 · doi:10.1137/S0363012998338806
[17] Y. Xia and J. Wang, A general methodology for designing globally convergent optimization neural networks,, IEEE Trans Neural Netw., 9 (1998), 1331-1343. doi: 10.1109/72.728383. · doi:10.1109/72.728383
[18] J. Yang and H. A. Liu, Modified projected gradient method for monotone variational inequalities, J. Optim. Theory Appl., 179 (2018), 197-211. doi: 10.1007/s10957-018-1351-0. · Zbl 1506.47099 · doi:10.1007/s10957-018-1351-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.