×

Direct data-driven control of discrete-time switched systems with input saturation. (English) Zbl 07920727

Summary: In this paper, the problem of direct data-driven control is studied for a class of discrete-time switched systems with input saturation. For unknown switched systems, a data-driven approach is adopted to parameterize the controller directly from the input-state data of the system, which does not depend on the exact mathematical model. In addition, the input saturation problem is addressed by using the polyhedral convex hull method, and the data representation is given for the closed-loop system. By using Lyapunov theory and dwell time method, the exponential stability conditions of linear matrix inequalities (LMIs) form are obtained, and the desired attractive domain is estimated. Moreover, considering the data polluted by process noise, a robust data-driven state feedback controller is designed and the performance of \(\mathcal{L}_2\) gain is guaranteed. Finally, the advantage of the proposed data-driven based control method is verified by two numerical examples.

MSC:

93C10 Nonlinear systems in control theory
93C55 Discrete-time control/observation systems
93D15 Stabilization of systems by feedback
Full Text: DOI

References:

[1] D. Antunes and W. P. Maurice Heemels, Linear quadratic regulation of switched systems using informed policies, IEEE Trans. Automat. Contr., 62 (2017), 2675-2688. doi: 10.1109/TAC.2016.2616388. · Zbl 1369.93329 · doi:10.1109/TAC.2016.2616388
[2] J. Berberich, A. Koch, C. W. Scherer and F. Allgöwer, Robust data-driven state-feedback design, 2020 American Control Conference (ACC), (2020), 1532-1538.
[3] J. Berberich, J. Köhler, M. A. Müller and F. Allgöwer, Data-driven model predictive control with stability and robustness guarantees, IEEE Trans. Automat. Contr., 65 (2021), 1702-1717. doi: 10.1109/TAC.2020.3000182. · Zbl 1536.93207 · doi:10.1109/TAC.2020.3000182
[4] V. Breschi, D. Masti, S. Formentin and A. Bemporad, NAW-NET: Neural anti-windup control for saturated nonlinear systems, 2020 59th IEEE Conference on Decision and Control (CDC), 2020, 3335-3340. doi: 10.1109/CDC42340.2020.9304487. · doi:10.1109/CDC42340.2020.9304487
[5] V. Breschi, L. Zaccarian and S. Formentin, Data-driven stabilization of input-saturated systems, IEEE Contr. Syst. Lett., 7 (2023), 1640-1645. doi: 10.1109/LCSYS.2023.3266254. · doi:10.1109/LCSYS.2023.3266254
[6] J. Coulson, J. Lygeros and F. Dörfler, Data-enabled predictive control: In the shallows of the DeePC, 2019 18th European Control Conference (ECC), (2019), 307-312.
[7] C. De Persis and P. Tesi, Formulas for data-driven control: Stabilization, optimality and robustness, IEEE Trans. Automat. Contr., 65 (2020), 909-924. doi: 10.1109/TAC.2019.2959924. · Zbl 1533.93591 · doi:10.1109/TAC.2019.2959924
[8] Z. -J. Fu, W. -F. Xie, X. Han and W. -D. Luo, Nonlinear systems identification and control via dynamic multitime scales neural networks, IEEE Trans. Neural Networks Learn. Syst., 24 (2013), 1814-1823.
[9] M. Guo, C. De Persis and P. Tesi, Data-driven stabilization of nonlinear polynomial systems with noisy data, IEEE Trans. Automat. Contr., 67 (2022), 4210-4217. doi: 10.1109/TAC.2021.3115436. · Zbl 1537.93538 · doi:10.1109/TAC.2021.3115436
[10] M. Han, K. Wong, J. Euler-Rolle, L. Zhang and R. K. Katzschmann, Robust learning-based control for uncertain nonlinear systems with validation on a soft robot, IEEE Trans. Neural Networks Learn. Syst., (2023). doi: 10.1109/TNNLS.2023.3328643. · doi:10.1109/TNNLS.2023.3328643
[11] M. Han, R. Zhang, L. Zhang, Y. Zhao and W. Pan, Asynchronous observer design for switched linear systems: A tube-based approach, IEEE/CAA J. Automatica Sin., 7 (2020), 70-81. doi: 10.1109/JAS.2019.1911822. · doi:10.1109/JAS.2019.1911822
[12] K. Hu and T. Liu, Data-driven output-feedback control for unknown switched linear systems, IEEE Contr. Syst. Lett., 7 (2023), 2299-2304. doi: 10.1109/LCSYS.2023.3286474. · doi:10.1109/LCSYS.2023.3286474
[13] Z.-S. Hou and Z. Wang, From model-based control to data-driven control: Survey, classification and perspective, Inf. Sci., 235 (2013), 3-35. doi: 10.1016/j.ins.2012.07.014. · Zbl 1284.93010 · doi:10.1016/j.ins.2012.07.014
[14] T. Y. Kuc, J. S. Lee and K. Nam, An iterative learning control theory for a class of nonlinear dynamic systems, Automatica (Oxf), 28 (2005), 1215-1221. doi: 10.1016/0005-1098(92)90063-L. · Zbl 0775.93092 · doi:10.1016/0005-1098(92)90063-L
[15] J. Lian and F. Wu, Stabilization of switched linear systems subject to actuator saturation via invariant semiellipsoids, IEEE Trans. Automat. Contr., 65 (2019), 4332-4339. doi: 10.1109/TAC.2019.2955028. · Zbl 1536.93667 · doi:10.1109/TAC.2019.2955028
[16] Y. Liu, X. Chen, J. Lu and W. Gui, Non-weighted \(l_2 / \mathcal{L}_2\)-gain of asynchronously switched systems, Nonlinear Anal. Hybrid Syst., 43 (2021), 101105, 16 pp. doi: 10.1016/j.nahs.2021.101105. · Zbl 1485.93276 · doi:10.1016/j.nahs.2021.101105
[17] S. Mobayen and F. Tchier, Composite nonlinear feedback integral sliding mode tracker design for uncertain switched systems with input saturation, Commun Nonlinear Sci Numer Simul., 65 (2018), 173-184. doi: 10.1016/j.cnsns.2018.05.019. · Zbl 1508.93110 · doi:10.1016/j.cnsns.2018.05.019
[18] B. Nortmann and T. Mylvaganam, Direct data-driven control of linear time-varying systems, IEEE Trans. Automat. Contr., 68 (2023), 4888-4895. doi: 10.1109/TAC.2023.3276909. · Zbl 07746636 · doi:10.1109/TAC.2023.3276909
[19] F. Porcari, V. Breschi, L. Zaccarian and S. Formentin, Direct data-driven control of input saturated systems: A LMI-based approach, preprint, (2023), arXiv: 2312.04272.
[20] M. Rotulo, C. De Persis and P. Tesi, Data-driven linear quadratic regulation via semidefinite programming, IFAC-PapersOnLine, 63 (2020), 3995-4000.
[21] J. G. Rueda-Escobedo, E. Fridman and J. Schiffer, Data-driven control for linear discrete-time delay systems, IEEE Trans. Automat. Contr., 67 (2022), 3321-3336. doi: 10.1109/TAC.2021.3096896. · Zbl 1537.93459 · doi:10.1109/TAC.2021.3096896
[22] J. G. Rueda-Escobedo and J. Schiffer, Data-driven internal model control of second-order discrete volterra systems, 2020 59th IEEE Conference on Decision and Control (CDC), (2020), 4572-4579.
[23] C. Scherer and S. Weiland, Linear Matrix Inequalities in Control, \(3{}^{n d}\) edition, Springer-Verlag, New York, 2000.
[24] A. Seuret, C. Albea and F. Gordillo, Linear matrix inequality relaxations and its application to data-driven control design for switched affine systems, Int. J. Robust Nonlinear Control., 33 (2023), 6597-6618. doi: 10.1002/rnc.6712. · Zbl 1534.93371 · doi:10.1002/rnc.6712
[25] A. Seuret, C. Albea and F. Gordillo, Practical stabilization of switched affine systems: Model and data-driven conditions, IEEE Contr. Syst. Lett., 7 (2023), 1628-1633.
[26] A. Seuret and S. Tarbouriech, Robust data-driven control design for linear systems subject to input saturations, preprint, (2023) arXiv: 2303.04455.
[27] A. Seuret and S. Tarbouriech, A data-driven approach to the \(\mathcal{L}_2\) stabilization of linear systems subject to input saturations, IEEE Contr. Syst. Lett., 7 (2023), 1646-1651. doi: 10.1109/LCSYS.2023.3267022. · doi:10.1109/LCSYS.2023.3267022
[28] H. van Waarde, M. K. Camlibel and M. Mesbahi, From noisy data to feedback controllers: Non-conservative design via a matrix S-lemma, IEEE Trans. Automat. Contr., 67 (2022), 162-175. doi: 10.1109/TAC.2020.3047577. · Zbl 1536.93272 · doi:10.1109/TAC.2020.3047577
[29] H. J. van Waarde, J. Eising, H. L. Trentelman and M. K. Camlibel, Data informativity: A new perspective on data-driven analysis and control, IEEE Trans. Automat. Contr., 65 (2020), 4753-4768. doi: 10.1109/TAC.2020.2966717. · Zbl 1536.93167 · doi:10.1109/TAC.2020.2966717
[30] H. J. van Waarde and M. Mesbahi, Data-driven parameterizations of suboptimal LQR and \(\mathcal{H}_2\) controllers, IFAC-PapersOnLine, 53 (2020), 4234-4239.
[31] M. Wang, J. B. Qiu, H. C. Yan, Y. X. Tian and Z. C. Li, Data-driven control for discrete-time piecewise affine systems, Automatica (Oxf), 155 (2023), 111168, 10 pp. doi: 10.1016/j.automatica.2023.111168. · Zbl 1520.93304 · doi:10.1016/j.automatica.2023.111168
[32] Z. Wang, G. O. Berger and R. M. Jungers, Data-driven feedback stabilization of switched linear systems with probabilistic stability guarantees, 2021 60th IEEE Conference on Decision and Control (CDC), (2021), 4400-4405. doi: 10.1109/CDC45484.2021.9683233. · doi:10.1109/CDC45484.2021.9683233
[33] A. Weissensteiner, A Q-learning approach to derive optimal consumption and investment strategies, IEEE Trans. Neural Networks Learn. Syst., 20 (2009), 1234-1243.
[34] S. Wildhagen, J. Berberich, M. Hertneck and F. Allgöwer, Data-driven analysis and controller design for discrete-time systems under aperiodic sampling, IEEE Trans. Automat. Contr., 68 (2023), 3210-3225. doi: 10.1109/TAC.2022.3183969. · Zbl 07744816 · doi:10.1109/TAC.2022.3183969
[35] J. C. Willems, P. Rapisarda, I. Markovsky and B. De Moor, A note on persistency of excitation, Syst. Control Lett., 65 (2005), 325-329. doi: 10.1016/j.sysconle.2004.09.003. · Zbl 1129.93362 · doi:10.1016/j.sysconle.2004.09.003
[36] R. N. Yang, L. L. Li and P. Shi, Dissipativity-based two-dimensional control and filtering for a class of switched systems, IEEE Trans. Syst. Man Cybern. Syst., 51 (2021), 2737-2750. doi: 10.1109/TSMC.2019.2916417. · doi:10.1109/TSMC.2019.2916417
[37] J. N. Yang, Y. M. Zhu, L. X. Zhang, G. R. Duan, M. Liu and X. B. Cao, Smooth control with flexible duration for semi-Markov jump linear systems, Automatica (Oxf)., 164 (2024), 111612, 11 pp. doi: 10.1016/j.automatica.2024.111612. · Zbl 1537.93779 · doi:10.1016/j.automatica.2024.111612
[38] S. Zhai and X. S. Yang, Dwell-time approach to \(\mathcal{L}_2\)-induced gain analysis of discrete-time switched systems subject to actuator saturation, IET Control. Theory Appl., 7 (2013), 290-297. doi: 10.1049/iet-cta.2012.0508. · doi:10.1049/iet-cta.2012.0508
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.