×

Cluster braid groups of Coxeter-Dynkin diagrams. (English) Zbl 07920042

Summary: Cluster exchange groupoids are introduced by King-Qiu as an enhancement of cluster exchange graphs to study stability conditions and quadratic differentials. In this paper, we introduce the cluster exchange groupoid for any finite Coxeter-Dynkin diagram \(\Delta\) and show that its fundamental group is isomorphic to the corresponding braid group associated with \(\Delta \).

MSC:

16Gxx Representation theory of associative rings and algebras
13Fxx Arithmetic rings and other special commutative rings
20Fxx Special aspects of infinite or finite groups

References:

[1] Brieskorn, E., Sur les groupes de tresses, Séminaire Bourbaki 1971/72, Exposés 400-417, 21-44, 1973, Springer: Springer Berlin, [d’après VI Arnol’d] · Zbl 0277.55003
[2] Bourbaki, N., Lie Groups and Lie Algebras, Elements of Mathematics, 2002, Chapters 4-6. Translated from the 1968 French original by Andrew Pressley · Zbl 0983.17001
[3] Coxeter, H. S.M., Discrete groups generated by reflections, Ann. Math., 35, 588-621, 1934 · Zbl 0010.01101
[4] Chang, W.; Qiu, Y., Frobenius morphisms and stability conditions, Publ. Res. Inst. Math. Sci.
[5] Crips, J., Injective maps between Artin groups, (Geometric Group Theory down Under. Geometric Group Theory down Under, Canberra, 1996, 1999, De Gruyter: De Gruyter Berlin), 119-137 · Zbl 1001.20034
[6] Crisp, J.; Paris, L., The solution to a conjecture of Tits on the subgroup generated by the squares of the generators of an Artin group, Invent. Math., 145, 19-36, 2001 · Zbl 1002.20021
[7] Deligne, P., Les immeubles des groupes de tresses généralisés, Invent. Math., 17, 4, 273-302, 1972 · Zbl 0238.20034
[8] Duffield, D.; Tumarkin, P., Categorifications of non-integer quivers: types \(H_4, H_3\) and \(I_2(2 n + 1)\)
[9] Duffield, D.; Tumarkin, P., Categorification of non-integer quivers: type \(I_2(2 n)\)
[10] Derksen, H.; Weyman, J.; Zelevinsky, A., Quivers with potentials and their representations I: mutations, Selecta Math., 14, 1, 59-119, 2008 · Zbl 1204.16008
[11] Dyer, M., Embeddings of root systems I: root systems over commutative rings, J. Algebra, 321, 11, 3226-3248, 2009 · Zbl 1181.20036
[12] Fomin, S.; Reading, N., Root systems and generalized associahedra, geometric combinatorics, IAS/Park City Math. Ser., 13, 63-131, 2004 · Zbl 1147.52005
[13] Fomin, S.; Zelevinsky, A., Y-systems and generalized associahedra, Ann. Math., 158, 977-1018, 2003 · Zbl 1057.52003
[14] Fomin, S.; Zelevinsky, A., Cluster algebras II: finite type classification, Invent. Math., 154, 63-121, 2003 · Zbl 1054.17024
[15] Fomin, S.; Shapiro, M.; Thurston, D., Cluster algebras and triangulated surfaces. Part I: cluster complexes, Acta Math., 201, 1, 83-146, 2008 · Zbl 1263.13023
[16] Grant, J.; Marsh, R., Braid groups and quiver mutations, Pacific J. Math., 290, 1, 77-116, 2017 · Zbl 1375.13032
[17] Haley, J.; Hemminger, D.; Landesman, A.; Peck, H., Artin group presentations arising from cluster algebras, Algebr. Represent. Theory, 20, 629-653, 2017 · Zbl 1408.13056
[18] Iyama, O.; Yoshino, Y., Mutations in triangulated categories and rigid Cohen-Macaulay modules, Invent. Math., 172, 117-168, 2008 · Zbl 1140.18007
[19] Keller, B., On cluster theory and quantum dilogarithm identities, EMS Ser. Congr. Rep., 85-116, 2011 · Zbl 1307.13028
[20] Keller, B., Cluster Algebras and Derived Categories, EMS Series of Congress Reports, 123-183, 2012 · Zbl 1299.13027
[21] Keller, B.; Van den Bergh, M., Deformed Calabi-Yau completions, J. Reine Angew. Math., 654, 125-180, 2011 · Zbl 1220.18012
[22] King, A.; Qiu, Y., Exchange graphs and ext quivers, Adv. Math., 285, 1106-1154, 2015 · Zbl 1405.16021
[23] King, A.; Qiu, Y., Cluster exchange groupoids and framed quadratic differentials, Invent. Math., 220, 479-523, 2020 · Zbl 1457.13045
[24] Lusztig, G., Some examples of square integrable representations of semisimple p-adic groups, Trans. Amer. Math. Soc., 277, 2, 623-653, 1983 · Zbl 0526.22015
[25] Qiu, Y., Stability conditions and quantum dilogarithm identities for Dynkin quivers, Adv. Math., 269, 220-264, 2015 · Zbl 1319.18004
[26] Qiu, Y., Decorated marked surfaces: spherical twists versus braid twists, Math. Ann., 365, 595-633, 2016 · Zbl 1378.16027
[27] Qiu, Y.; Woolf, J., Contractible stability spaces and faithful braid group actions, Geom. Topol., 22, 3701-3760, 2018 · Zbl 1423.18044
[28] Qiu, Y.; Zhang, X., Fusion-stable structures in triangulated categories
[29] Qiu, Y.; Zhou, Y., Finite presentations for spherical/braid twist groups from decorated marked surfaces, J. Topol., 13, 501-538, 2018 · Zbl 1481.20134
[30] Seidel, P.; Thomas, R., Braid group actions on derived categories of coherent sheaves, Duke Math. J., 108, 37-108, 2001 · Zbl 1092.14025
[31] Van der Lek, H., The homotopy type of complex hyperplane complements, 1983, Ph.D Thesis
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.