×

On the geometry of coherent state maps. (English) Zbl 07919697

Kielanowski, Piotr (ed.) et al., Geometric methods in physics XL, workshop, Białowieża, Poland, June 20–25, 2023. Cham: Birkhäuser. Trends Math., 19-40 (2024).
Summary: Given a mechanical system whose phase space \({\mathfrak{M}}^n\) is equipped with a complex structure \(J\), and a Hermitian line bundle \((E, H) \to{\mathfrak{M}}\), a coherent state map is an anti-holomorphic embedding \(\mathscr{K} : {\mathfrak{M}} \to \mathbb{C}\mathbb{P} \big ({\mathscr M} \big)\) built in terms of \((J, H)\), with \(\mathscr{M} = H^0 \Big ({\mathfrak{M}}, L^2 \mathscr{O} \big (T^{\ast (n, 0)} ({\mathfrak{M}}) \otimes E \big) \Big)\), such that for any pair of classical states \(z\), \(\zeta \in{\mathfrak{M}}\) the number \(\langle{\mathscr K} (z), {\mathscr K} (\zeta) \rangle\) is the transition probability amplitude from the coherent state \({\mathscr K}(z)\) to \({\mathscr K}(\zeta)\). We examine three related questions, as follows: (i) We generalize Lichnerowicz’s theorem (on \(\pm\) holomorphic maps of finite-dimensional compact Kählerian manifolds) to describe anti-holomorphic maps \({\mathscr K} : {\mathfrak{M}} \to \mathbb{C}\mathbb{P} ({\mathscr M})\) as harmonic maps that are absolute minima within their homotopy classes. (ii) If the phase space is a domain \({\mathfrak{M}} = \Omega \subset{\mathbb{C}}^n\) and \(E \to \Omega\) is a trivial Hermitian line bundle such that \(\gamma = H \big (\sigma_0, \sigma_0 \big) \in AW(\Omega)\) (i.e., \(\gamma\) is an admissible weight), we discuss the use of \(K_\gamma (z, \zeta)\) [the \(\gamma\)-weighted Bergman kernel of \(\Omega\)] vis-a-vis to the calculation of the transition probability amplitudes, focusing on the case where \(\Omega = \Omega_n\) is the Siegel domain and \(\gamma (z) = \gamma_a (z) = \big (\operatorname{Im} (z_n) - |z^\prime |^2 \big)^a, a > - 1\). (iii) We study the boundary behavior of a coherent state map \({\mathscr K} : \Omega \to \mathbb{C}\mathbb{P} \big [ L^2 H (\Omega_n, \gamma_a) \big ]\).
For the entire collection see [Zbl 07882604].

MSC:

32A25 Integral representations; canonical kernels (Szegő, Bergman, etc.)
32M15 Hermitian symmetric spaces, bounded symmetric domains, Jordan algebras (complex-analytic aspects)
32J27 Compact Kähler manifolds: generalizations, classification
Full Text: DOI

References:

[1] E. Barletta & S. Dragomir, On the Djrbashian kernel of a Siegel domain, Studia Mathematica, (1)127(1998), 47-63. · Zbl 0903.32008
[2] E. Barletta & S. Dragomir, Uniform approximation of holomorphic forms, Complex Variables, 35(1998), 359-366. · Zbl 0938.32007
[3] E. Barletta & S. Dragomir & F. Esposito, Kostant-Souriau-Odzijewicz quantization of a mechanical system whose classical phase space is a Siegel domain, International Journal of Reproducing Kernels, (1)1(2022), 1-19.
[4] D. Barrett & L. Lee, On the Szegö metric, arXiv:1109.3484v1 [math CV] 15 Sep 2011
[5] D. Beltiţ \(\breve{\text{a}} \) & J.E. Galé, Coherent state map quantization in a Hermitian-like setting, Journal of Geometry and Physics, 92(2015), 100-118. · Zbl 1337.46022
[6] Ş. Berceanu, Coherent states and geometry on the Siegel-Jacobi disk, arXiv:1307.4219v2 [mathDG] 21 Jan 2014
[7] So-Chin Chen, A counterexample to the differentiability of the Bergman kernel function, Proc. Amer. Math. Soc., (6)124(1996), 1807-1810. · Zbl 0865.32016
[8] Bo-Yong Chen & Siqi Fu, Comparison of the Bergman and Szegö kernels, Adv. Math., 228(2011), 2366-2384. · Zbl 1229.32008
[9] J.P. D’Angelo, An explicit computation of the Bergman kernel function, J. Geom. Anal., 4(1994), 23-34. · Zbl 0794.32021
[10] M.M. Djrbashian & A.H. Karapetyan, Integral representations for some classes of functions holomorphic in a Siegel domain, J. Math. Anal. Appl., 179(1993), 91-109. · Zbl 0791.32004
[11] S. Dragomir & L. Ornea, Locally conformal Kähler geometry, Progress in Mathematics, Vol. 155, Birkhäuser, Boston-Basel-Berlin, 1998. · Zbl 0887.53001
[12] S. Dragomir & G. Tomassini, Differential Geometry and Analysis on CR Manifolds, Progress in Mathematics, Vol. 246, Birkhäuser, Boston-Basel-Berlin, 2006. · Zbl 1099.32008
[13] J. Eells & K.D. Elworthy, On the differential topology of Hilbertian manifolds, Proc. of Symposia in Pure Mathematics, vol. 15(1970), Global Analysis, Edited by S.-S. Chern & S. Smale (Proc. Summer Institute on Global Analysis). · Zbl 0205.53602
[14] J. Eells & J.H. Sampson, Harmonic maps of Riemannian manifolds, American J. Math., (1)86(1964), 109-160. · Zbl 0122.40102
[15] J. Eells & K.D. Elworthy, Open embeddings of certain Banach manifolds, Annals of Math., (3)91(1970), 465-485. · Zbl 0198.28804
[16] S. Fitzpatrick, On the geometric quantization of contact manifolds, arXiv:0909.2023v3 [math.SG] 24 Mar 2011
[17] S. Fitzpatrick, On transversally elliptic operators and the quantization of manifolds with \(f- structure \), arXiv:1101.5831v2 [math.SG] 23 Mar 2011
[18] S. Fitzpatrick, An equivariant index formula for almost-CR manifolds, arXiv:0810.0338v2 [math.SG] 1 Feb 2009
[19] F. Forellli & W. Rudin, Projections on spaces of holomorphic functions in balls, Indiana Univ. Math. J., 24(1974), 593-602. · Zbl 0297.47041
[20] G. Francsics & N. Hanges, The Bergman kernel of complex ovals and multivariable hypergeometric functions, J. Funct. Anal., 1428(1996), 494-510. · Zbl 0871.32016
[21] K. Gawedzki, Fourier-like kernels in geometric quantization, Instytut Matematyczny Polskiej Akademi Nauk, Warsaw, Poland, 1976, pp. 5-78. · Zbl 0343.53024
[22] S. Goldberg, Curvature and Homology, Dover Books on Advanced Mathematics, Dover Publications, Inc., New York, 1962.
[23] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Academic Press, New York; London, 1978. · Zbl 0451.53038
[24] N. Kerzman, The Cauchy kernel, the Szegö kernel, and the Riemann mapping function, Math. Ann., 236(1968), 85-93. · Zbl 0419.30012
[25] N. Kerzman, The Bergman kernel function. Differentiability at the boundary, Math. Ann., 195(1972), 149-158.
[26] F.G. Krantz, Function theory of several complex variables, John Wiley & Sons, New York, 1982. · Zbl 0471.32008
[27] H. Lewy, On the local character of the solution of an atypical differential equation in three variables and a related theorem for regular functions of two complex variables, Ann. of Math., 64(1956), 514-522. · Zbl 0074.06204
[28] J. Mujica, Complex Analysis in Banach Spaces, Dover Publications, Inc., Mineola, New York, 2010 (reprinted from the North Holland edition, 1985).
[29] A. Odzijewicz, On reproducing kernels and quantization of states, Commun. Math. Phys., 114(1988), 577-597. · Zbl 0645.53044
[30] A. Odzijewicz, Coherent states and geometric quantization, Commun. Math. Phys., 150(1992), 385-413. · Zbl 0768.58022
[31] Z. Pasternak-Winiarski, On weights which admit the reproducing kernel of Bergman type, Int. J. Math. & Math. Sci., 15(1992), 1-14. · Zbl 0749.32019
[32] Z. Pasternak-Winiarski, On the dependence of the reproducing kernel on the weight of integration, J. Func. Anal., 94(1990), 110-134. · Zbl 0739.46010
[33] R. Penrose & M.A.H. MacCallum, Twistor theory: an approach to the quantization of fields and space-time, Phys. Rep., (4)6(1972), 241-316.
[34] S. Saitoh, Hilbert spaces induced by Hilbert space valued functions, Proc. Amer. Math. Soc., (1)89(1983), 74-78. · Zbl 0595.46026
[35] T.A. Schilling, Geometry of Quantum Mechanics, Ph.D. Thesis, The Pensilvania State University, May 1996.
[36] W. Wirtinger, Zur formalen Theorie der Functionen von mehr complexen Veränderlichen, Math. Ann., 97(1927), 357-375. · JFM 52.0342.03
[37] T.L. Zynda, On weights which admit reproducing kernel of Szegö type, Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), (5)55(2020), pp. 320-327. · Zbl 1458.32006
[38] T.L. Zynda, Weighted generalization of the Szegö kernel and how it can be used to prove general theorems of complex analysis, Geometric Methods in Physics, XXXVII Workshop 2018, Trends in Mathematics, 212-218, 219 Springer Nature. · Zbl 1442.32007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.