×

A boundary integral equation method for the fluid-solid interaction problem. (English) Zbl 07919373


MSC:

35Qxx Partial differential equations of mathematical physics and other areas of application
35P25 Scattering theory for PDEs
45A05 Linear integral equations
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
Full Text: DOI

References:

[1] F. J. Fahy, P. Gardonio, Sound and Structural Vibration: Radiation, Transmission and Response, Academic Press, London, 2007. https://doi.org/10.1016/B978-0-12-373633-8.X5000-5
[2] M. Fatemi, J. F. Greenleaf, Ultrasound-Stimulated Vibro-Acoustic Spectrography, Science, 280 (1998), 82-85. https://doi.org/10.1126/science.280.5360.8 doi: 10.1126/science.280.5360.8 · doi:10.1126/science.280.5360.8
[3] H. Morand, R. Ohayon, Fluid Structure Interaction, Wiley, New York, 1995. https://doi.org/10.1007/3-540-34596-5 · Zbl 0834.73002 · doi:10.1007/3-540-34596-5
[4] M. Sanna, Numerical simulation of fluid-structure interaction between acoustic and elastic waves, Nihon Rinsho, 70 (2011), 685-696. https://doi.org/10.1051/aacus/2021014 doi: 10.1051/aacus/2021014 · doi:10.1051/aacus/2021014
[5] B. Desjardins, M. J. Esteban, C. Grandmont and P. Le Tallec, Weak solutions for a fluid-elastic structure interaction model, Revista Matemtica Complutense, 2 (2001), 523-538. https://doi.org/10.5209/rev-REMA.2001.v14.n2.17030 doi: 10.5209/rev-REMA.2001.v14.n2.17030 · Zbl 1007.35055 · doi:10.5209/rev-REMA.2001.v14.n2.17030
[6] G. Hsiao, R. E. Kleinman, G. F. Roach, Weak Solutions of Fluid-Solid Interaction Problems, Math. Nachr., 218 (2000), 139-163. https://doi.org/10.1002/1522-2616 doi: 10.1002/1522-2616 · Zbl 0963.35043 · doi:10.1002/1522-2616
[7] A. Bernardo, A. Mrquez, S. Meddahi, Analysis of an interaction problem between an electromagnetic field and an elastic body, Int. J. Num. Anal. Model., 7 (2010), 749-765. http://www.math.ualberta.ca/ijnam/Volume-7-2010/No-4-10/2010-04-10.pdf · Zbl 1193.78023
[8] G. N. Gatica, A. Mrquez, S. Meddahi, Analysis of the coupling of BEM, FEM, and mixed-FEM for a two-dimensional fluid-solid interaction problem, Appl. Num. Math., 59 (2009), 2735-2750. https://doi.org/10.1016/j.apnum.2008.12.025 doi: 10.1016/j.apnum.2008.12.025 · Zbl 1171.76027 · doi:10.1016/j.apnum.2008.12.025
[9] G. N. Gatica, A. Mrquez, S. Meddahi, Analysis of the Coupling of Lagrange and Arnold-Falk-Winther Finite Elements for a Fluid-Solid Interaction Problem in Three Dimensions, SIAM J. Numer. Anal., 50 (2012), 1648-1674. https://doi.org/10.1137/110836705 doi: 10.1137/110836705 · Zbl 1426.76262 · doi:10.1137/110836705
[10] X. Jiang, P. Li, An adaptive finite element PML method for the acoustic-elastic interaction in three dimensions, Commun. Comput. Phys., 22 (2017), 1486-1507. https://doi.org/10.4208/cicp.OA-2017-0047 doi: 10.4208/cicp.OA-2017-0047 · Zbl 1488.65627 · doi:10.4208/cicp.OA-2017-0047
[11] G. C. Everstine, F. M. Henderson, Coupled finite element/boundary element approach for fluid-structure interaction, J. Acoust. Soc. Amer., 87 (1990), 1938-1947. https://doi.org/10.1121/1.399320 doi: 10.1121/1.399320 · doi:10.1121/1.399320
[12] G. N. Gatica, A. Mrquez, S. Meddahi, Analysis of an augmented fully-mixed finite element method for a three-dimensional fluid-solid interaction problem, Int. J. Num. Anal. Model., 11 (2014), 624-656. http://www.math.ualberta.ca/ijnam/Volume-11-2014/No-3-14/2014-03-10.pdf · Zbl 1499.65660
[13] D. T. Wilton, Acoustic radiation and scattering from elastic structures, Int. J. Numer. Meth. Eng., 13 (1978), 123-138. https://doi.org/10.1002/nme.1620130109 doi: 10.1002/nme.1620130109 · Zbl 0384.76059 · doi:10.1002/nme.1620130109
[14] A. Boström, Scattering of stationary acoustic waves by an elastic obstacle immersed in a fluid, J. Acoust. Soc. Amer., 67 (1980), 390-398. https://doi.org/10.1121/1.383925 doi: 10.1121/1.383925 · Zbl 0454.76070 · doi:10.1121/1.383925
[15] A. Boström, Scattering of acoustic waves by a layered elastic obstacle in a fluid-An improved nullfield approach, J. Acoust. Soc. Amer., 76 (1984), 588-593. https://doi.org/10.1121/1.391154 doi: 10.1121/1.391154 · Zbl 0564.73033 · doi:10.1121/1.391154
[16] B. Yildirim, S. Lin, S. Mathur, J.Y. Murthy, A parallel implementation of fluid-solid interaction solver using an immersed boundary method, Computers Fluids, 86 (2013), 251-274. · Zbl 1290.76007
[17] Q. Zhang, R. D. Guy, B. Philip, A projection preconditioner for solving the implicit immersed boundary equations, Numer. Math. Theor. Meth. Appl., 7 (2014), 473-498. https://doi.org/10.1017/S100489790000129X doi: 10.1017/S100489790000129X · Zbl 1324.76043 · doi:10.1017/S100489790000129X
[18] Y. He, J. Shen, Unconditionally stable pressure-correction schemes for a linear fluid-structure interaction problem, Numer. Math. Theor. Meth. Appl., 7 (2014), 537-554. https://doi.org/10.1017/S1004897900001331 doi: 10.1017/S1004897900001331 · Zbl 1324.76040 · doi:10.1017/S1004897900001331
[19] J. Li, H. Liu, Y. Wang, Recovering an electromagnetic obstacle by a few phaseless backscattering measurements, Inverse Problems, 33 (2017), 035011. https://doi.org/10.1088/1361-6420/aa5bf3 doi: 10.1088/1361-6420/aa5bf3 · Zbl 1432.78008 · doi:10.1088/1361-6420/aa5bf3
[20] H. Liu, M. Petrini, L. Rondi, J. Xiao, Stable determination of sound-hard polyhedral scatterers by a minimal number of scattering measurements, J. Differential Equations, 262 (2017), 1631-1670. https://doi.org/10.1016/j.jde.2016.10.021 doi: 10.1016/j.jde.2016.10.021 · Zbl 1352.74148 · doi:10.1016/j.jde.2016.10.021
[21] H. Liu, L. Rondi, J. Xiao, Mosco convergence for spaces, higher integrability for Maxwell’s equations, and stability in direct and inverse EM scattering problems, J. Eur. Math. Soc., 21 (2019), 2945-2993. https://doi.org/10.4171/JEMS/895 doi: 10.4171/JEMS/895 · Zbl 1502.78020 · doi:10.4171/JEMS/895
[22] J. Li, P. Li, H. Liu, X. Liu, Recovering multiscale buried anomalies in a two-layered medium, Inverse Problems, 31 (2015), 105006. https://doi.org/10.1088/0266-5611/31/10/105006 doi: 10.1088/0266-5611/31/10/105006 · Zbl 1330.78012 · doi:10.1088/0266-5611/31/10/105006
[23] M. Abdelwahed, L. C. Berselli, N. Chorfi, On the uniqueness for weak solutions of steady double-phase fluids, Adv. Nonlinear Anal., 11 (2022), 454-468. https://doi.org/10.1515/anona-2020-0196 doi: 10.1515/anona-2020-0196 · Zbl 1484.76003 · doi:10.1515/anona-2020-0196
[24] R. Farwig, R. Kanamaru, Optimality of Serrin type extension criteria to the Navier-Stokes equations, Adv. Nonlinear Anal., 10 (2021), 1071-1085. https://doi.org/10.1515/anona-2020-0130 doi: 10.1515/anona-2020-0130 · Zbl 1473.35400 · doi:10.1515/anona-2020-0130
[25] M. Jenaliyev, M. Ramazanov, M. Yergaliyev, On the numerical solution of one inverse problem for a linearized two-dimensional system of Navier-Stokes equations, Opuscula Math., 42 (2022), 709-725. https://doi.org/10.7494/OpMath.2022.42.5.709 doi: 10.7494/OpMath.2022.42.5.709 · Zbl 1498.35390 · doi:10.7494/OpMath.2022.42.5.709
[26] Y. Sun, X. Lu, B. Chen, The method of fundamental solutions for the high frequency acoustic-elastic problem and its relationship to a pure acoustic problem, Eng. Anal. Bound. Elem., 156 (2023), 299-310. https://doi.org/10.1016/j.enganabound.2023.08.010 doi: 10.1016/j.enganabound.2023.08.010 · Zbl 1539.74505 · doi:10.1016/j.enganabound.2023.08.010
[27] Y. Wang, W. Wu, Initial boundary value problems for the three-dimensional compressible elastic Navier-Stokes-Poisson equations, Adv. Nonlinear Anal., 10 (2021), 1356-1383. https://doi.org/10.1515/anona-2020-0184 doi: 10.1515/anona-2020-0184 · Zbl 1472.76003 · doi:10.1515/anona-2020-0184
[28] F. Bu, J. Lin, F. Reitich, A fast and high-order method for the three-dimensional elastic wave scattering problem, J. Comput. Phy., 258 (2014), 856-870. https://doi.org/10.1016/j.jcp.2013.11.009 doi: 10.1016/j.jcp.2013.11.009 · Zbl 1349.74348 · doi:10.1016/j.jcp.2013.11.009
[29] M. Costabel, E. Stephan, A direct boundary integral equation method for transmission problems, J. Math. Anal. Appl., 106 (1985), 205-220. https://doi.org/10.1016/0022-247X(85)90118-0 doi: 10.1016/0022-247X(85)90118-0 · Zbl 0597.35021 · doi:10.1016/0022-247X(85)90118-0
[30] G. Hsiao, L. Xu, A system of boundary integral equations for the transmission problem in acoustics, J. Comput. Appl. Math., 61 (2011), 1017-1029. https://doi.org/10.1016/j.apnum.2011.05.003 doi: 10.1016/j.apnum.2011.05.003 · Zbl 1387.76072 · doi:10.1016/j.apnum.2011.05.003
[31] R. Kleinman, P. Martin, On single integral equations for the transmission problem of acoustics, SIAM J. Appl. Math., 48 (1998), 307-325. https://doi.org/10.1137/0148016 doi: 10.1137/0148016 · Zbl 0663.76095 · doi:10.1137/0148016
[32] Y. Sun, Indirect boundary integral equation method for the Cauchy problem of the Laplace equation, J. Sci. Comput., 71 (2017), 469-498. https://doi.org/10.1007/s10915-016-0308-4 doi: 10.1007/s10915-016-0308-4 · Zbl 1387.31002 · doi:10.1007/s10915-016-0308-4
[33] C. Luke, P. Martin, Fluid-solid interaction: acoustic scattering by a smooth elastic obstacle, SIAM J. Appl. Math., 55 (1995), 904-923. https://doi.org/10.1137/S0036139993259027 doi: 10.1137/S0036139993259027 · Zbl 0832.73045 · doi:10.1137/S0036139993259027
[34] E. Atkinson, The numerical solution of integral equations of the second kind, Cambridge University Press, Cambridge, 1997. https://doi.org/10.1017/CBO9780511626340 · Zbl 0899.65077
[35] B. Alpert, Hybrid Gauss-trapezoidal quadrature rules, SIAM J. Sci. Comput., 20 (1999), 1551-1584. https://doi.org/10.1137/S106482759732514 doi: 10.1137/S106482759732514 · Zbl 0933.41019 · doi:10.1137/S106482759732514
[36] R. Kress, On the numerical solution of a hypersingular integral equation in scattering theory, J. Comput. Appl. Math., 61 (1995), 345-360. https://doi.org/10.1016/0377-0427(94)00073-7 doi: 10.1016/0377-0427(94)00073-7 · Zbl 0839.65119 · doi:10.1016/0377-0427(94)00073-7
[37] R. Kress, I. H. Sloan, On the numerical solution of a logarithmic integral equation of the first kind for the Helmholtz equation, Numer. Math., 66 (1993), 199-214. https://doi.org/10.1007/BF01385694 doi: 10.1007/BF01385694 · Zbl 0791.65089 · doi:10.1007/BF01385694
[38] R. Kress, A collocation method for a hypersingular boundary integral equation via trigonometric differentiation, J. Integral Equations Appl., 26 (2014), 197-213. https://doi.org/10.1216/JIE-2014-26-2-197 doi: 10.1216/JIE-2014-26-2-197 · Zbl 1310.65169 · doi:10.1216/JIE-2014-26-2-197
[39] D. S. Jones, Low frequency scattering by a body in lubricated contact, Quarterly Journal of Mechanics and Applied Mathematics, 36 (1983), 111-138. https://doi.org/10.1093/qjmam/36.1.111 doi: 10.1093/qjmam/36.1.111 · Zbl 0552.73023 · doi:10.1093/qjmam/36.1.111
[40] D. Natroshvili, G. Sadunishvili, I. Sigua, Some remarks concerning Jones eigenfrequencies and Jones modes, Georgian Mathematical Journal, 12 (2005), 337-348. https://doi.org/10.1515/GMJ.2005.337 doi: 10.1515/GMJ.2005.337 · Zbl 1138.74327 · doi:10.1515/GMJ.2005.337
[41] T. Yin, G. C. Hsiao, L. Xu, Boundary integral equation methods for the two dimensional fluid-solid interaction problem, SIAM J. Numer. Anal., 55 (2017), 2361-2393. https://doi.org/10.1137/16M107567 doi: 10.1137/16M107567 · Zbl 1386.35056 · doi:10.1137/16M107567
[42] H. Dong, J. Lai, P. Li, Inverse obstacle scattering for elastic waves with phased or phaseless far-field data, SIAM J. Imaging Sci., 12 (2019), 809-838. https://doi.org/10.1137/18M122726 doi: 10.1137/18M122726 · Zbl 1524.78044 · doi:10.1137/18M122726
[43] H. Dong, J. Lai, P. Li, An inverse acoustic-elsatic interaction problem with phased or phaseless far-field data, Inverse Probl., 36 (2020), 035014. https://doi.org/10.1088/1361-6420/ab693e doi: 10.1088/1361-6420/ab693e · Zbl 1437.35702 · doi:10.1088/1361-6420/ab693e
[44] R. Kress, Linear integral equations, 3 ed., Spronger, New York, 2014. https://doi.org/10.1007/978-1-4614-9593-2 · Zbl 1328.45001 · doi:10.1007/978-1-4614-9593-2
[45] J. Lai, P. Li, A framework for simulation of multiple elastic scattering in two dimensions, SIAM J. Sci. Comput., 41 (2019), 3276-3299. https://doi.org/10.1137/18M123281 doi: 10.1137/18M123281 · Zbl 1439.35358 · doi:10.1137/18M123281
[46] D. Colton, R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 3 edn (New York: Springer), 2013. https://link.springer.com/book/10.1007/978-1-4614-4942-3 · Zbl 1266.35121
[47] H. Dong, J. Lai, P. Li, A highly accurate boundary integral method for the elastic obstaclescattering problem, Math. Comput., 90 (2021), 2785-2814. https://doi.org/10.1090/mcom/3660 doi: 10.1090/mcom/3660 · Zbl 1479.65035 · doi:10.1090/mcom/3660
[48] A. Kirsch, An introduction to the mathematical theory of inverse problems, New York, 2011. https://doi.org/10.1007/978-1-4419-8474-6 · Zbl 1213.35004 · doi:10.1007/978-1-4419-8474-6
[49] Z. Fu, Q. Xi, Y. Gu, J. Li, W. Qu, L. Sun, et al. Singular boundary method: A review and computer implementation aspects, Eng. Anal. Bound. Elem., 147 (2023), 231-266. https://doi.org/10.1016/j.enganabound.2022.12.004 doi: 10.1016/j.enganabound.2022.12.004 · Zbl 1521.74318 · doi:10.1016/j.enganabound.2022.12.004
[50] Z. Fu, Q. Xi, Y. Li, H. Huang, T. Rabczuket, Hybrid FEM-SBM solver for structural vibration induced underwater acoustic radiation in shallow marine environment, Comput. Meth. Appl. Mech. Eng., 369 (2020), 113236. https://doi.org/10.1016/j.cma.2020.113236 doi: 10.1016/j.cma.2020.113236 · Zbl 1506.74137 · doi:10.1016/j.cma.2020.113236
[51] Z. Fu, W. Chen, P. H. Wen, C. Z. Zhang, Singular boundary method for wave propagation analysis in periodic structures, J. Sound Vib., 425 (2018), 170-188. https://doi.org/10.1016/j.jsv.2018.04.005 doi: 10.1016/j.jsv.2018.04.005 · doi:10.1016/j.jsv.2018.04.005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.