×

Composite learning prescribed performance control of strict-feedback nonlinear systems with mismatched parametric uncertainties. (English) Zbl 07919322

Summary: A composite learning prescribed performance control (CLPPC) approach is presented for strict-feedback nonlinear systems with mismatched parametric uncertainties. A finite-time performance function based on polynomial is introduced to predefined a restriction region with respect to the tracking error. By introducing an error transformation function, the tracking error restriction problem of the original system is transformed into the stability problem of an equivalent transformation system. To guarantee the convergence of unknown parameters, online recording data and instantaneous are used to generate a prediction error, which is used together with filtered tracking errors to update parameter estimations under an interval excitation condition. All signals are proven to be ultimately uniformly stable under the proposed CLPPC strategy. Furthermore, the tracking error is limited within the predefined region after the predefined time. Simulation results verify the effectiveness of the proposed approach.

MSC:

93C10 Nonlinear systems in control theory
93A15 Large-scale systems
93B52 Feedback control
93C40 Adaptive control/observation systems
Full Text: DOI

References:

[1] Astolfi, A.; Karagiannis, D.; Ortega, R., Nonlinear and Adaptive Control with Applications, 2007, Springer Science & Business Media
[2] Wang, D.; Huang, J., Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form, IEEE Trans. Neural Netw., 16, 1, 195-202, 2005
[3] Wang, D., Neural network-based adaptive dynamic surface control of uncertain nonlinear pure-feedback systems, Internat. J. Robust Nonlinear Control, 21, 5, 527-541, 2011 · Zbl 1213.93105
[4] Butt, S.; Aschemann, H., Adaptive backstepping control for an engine cooling system with guaranteed parameter convergence under mismatched parameter uncertainties, Control Eng. Pract., 64, 195-204, 2017
[5] Ma, H.; Liang, H.; Zhou, Q.; Ahn, C. K., Adaptive dynamic surface control design for uncertain nonlinear strict-feedback systems with unknown control direction and disturbances, IEEE Trans. Syst. Man Cybern. Syst., 49, 3, 506-515, 2018
[6] Wan, M.; Liu, Q.; Zheng, J.; Song, J., Fuzzy state observer-based adaptive dynamic surface control of nonlinear systems with time-varying output constraints, Math. Probl. Eng., 2019, 2019 · Zbl 1435.93092
[7] Xin, L.-P.; Yu, B.; Zhao, L.; Yu, J., Adaptive fuzzy backstepping control for a two continuous stirred tank reactors process based on dynamic surface control approach, Appl. Math. Comput., 377, Article 125138 pp., 2020 · Zbl 1508.93181
[8] Liu, Y.; Yao, D.; Wang, L.; Lu, S., Distributed adaptive fixed-time robust platoon control for fully heterogeneous vehicles, IEEE Trans. Syst. Man Cybern. Syst., 53, 1, 264-274, 2022
[9] Slotine, J.-J. E.; Li, W., Composite adaptive control of robot manipulators, Automatica, 25, 4, 509-519, 1989 · Zbl 0696.93045
[10] Ciliz, M., Adaptive backstepping control using combined direct and indirect adaptation, Circuits Systems Signal Process., 26, 6, 911-939, 2007 · Zbl 1146.93341
[11] Liu, Y.; Li, H.; Lu, R.; Zuo, Z.; Li, X., An overview of finite/fixed-time control and its application in engineering systems, IEEE/CAA J. Autom. Sin., 9, 12, 2106-2120, 2022
[12] Xu, B.; Shou, Y.; Shi, Z.; Yan, T., Predefined-time hierarchical coordinated neural control for hypersonic reentry vehicle, IEEE Trans. Neural Netw. Learn. Syst., 34, 11, 8456-8466, 2023
[13] Pan, Y.; Zhou, Y.; Sun, T.; Er, M. J., Composite adaptive fuzzy \(H_\infty\) tracking control of uncertain nonlinear systems, Neurocomputing, 99, 15-24, 2013
[14] Soukkou, Y.; Labiod, S.; Tadjine, M., Composite adaptive dynamic surface control of nonlinear systems in parametric strict-feedback form, Trans. Inst. Meas. Control, 40, 4, 1127-1135, 2018
[15] Liu, H.; Pan, Y.; Cao, J., Composite learning adaptive dynamic surface control of fractional-order nonlinear systems, IEEE Trans. Cybern., 50, 6, 2557-2567, 2019
[16] Liu, H.; Pan, Y.; Li, S.; Chen, Y., Adaptive fuzzy backstepping control of fractional-order nonlinear systems, IEEE Trans. Syst. Man Cybern. Syst., 47, 8, 2209-2217, 2017
[17] Pan, Y.; Sun, T.; Yu, H., Composite adaptive dynamic surface control using online recorded data, Internat. J. Robust Nonlinear Control, 26, 18, 3921-3936, 2016 · Zbl 1351.93082
[18] Xu, B.; Wang, X.; Sun, F.; Shi, Z., Intelligent control of flexible hypersonic flight dynamics with input dead zone using singular perturbation decomposition, IEEE Trans. Neural Netw. Learn. Syst., 34, 9, 5926-5936, 2021
[19] Xu, B.; Shou, Y.; Wang, X.; Shi, P., Finite-time composite learning control of strict-feedback nonlinear system using historical stack, IEEE Trans. Cybern., 53, 9, 5777-5787, 2023
[20] Wang, X.; Xu, B.; Cheng, Y.; Wang, H.; Sun, F., Robust adaptive learning control of space robot for target capturing using neural network, IEEE Trans. Neural Netw. Learn. Syst., 34, 10, 7567-7577, 2023
[21] Bechlioulis, C. P.; Rovithakis, G. A., Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance, IEEE Trans. Autom. Control, 53, 9, 2090-2099, 2008 · Zbl 1367.93298
[22] Bu, X.; He, G.; Wei, D., A new prescribed performance control approach for uncertain nonlinear dynamic systems via back-stepping, J. Franklin Inst., 355, 17, 8510-8536, 2018 · Zbl 1402.93164
[23] Zhou, T.; Liu, C.; Liu, X.; Wang, H.; Zhou, Y., Finite-time prescribed performance adaptive fuzzy control for unknown nonlinear systems, Fuzzy Sets and Systems, 402, 16-34, 2021 · Zbl 1464.93044
[24] Li, J.; Du, J.; Hu, X., Robust adaptive prescribed performance control for dynamic positioning of ships under unknown disturbances and input constraints, Ocean Eng., 206, Article 107254 pp., 2020
[25] Xiang, W.; Liu, H., Fuzzy adaptive prescribed performance tracking control for uncertain nonlinear systems with unknown control gain signs, IEEE Access, 7, 149867-149877, 2019
[26] Bu, X.; Wu, X.; Zhu, F.; Huang, J.; Ma, Z.; Zhang, R., Novel prescribed performance neural control of a flexible air-breathing hypersonic vehicle with unknown initial errors, ISA Trans., 59, 149-159, 2015
[27] Yang, Q.; Chen, M., Adaptive neural prescribed performance tracking control for near space vehicles with input nonlinearity, Neurocomputing, 174, 780-789, 2016
[28] Huang, Z.; Bai, W.; Li, T.; Long, Y.; Chen, C. P.; Liang, H.; Yang, H., Adaptive reinforcement learning optimal tracking control for strict-feedback nonlinear systems with prescribed performance, Inform. Sci., 621, 407-423, 2023 · Zbl 1536.93424
[29] Chen, B.; Liu, X.; Lin, C., Observer and adaptive fuzzy control design for nonlinear strict-feedback systems with unknown virtual control coefficients, IEEE Trans. Fuzzy Syst., 26, 3, 1732-1743, 2017
[30] Ni, J.; Shi, P., Global predefined time and accuracy adaptive neural network control for uncertain strict-feedback systems with output constraint and dead zone, IEEE Trans. Syst. Man Cybern. Syst., 51, 12, 7903-7918, 2020
[31] Wang, Q.; Cao, J.; Liu, H., Adaptive fuzzy control of nonlinear systems with predefined time and accuracy, IEEE Trans. Fuzzy Syst., 30, 12, 5152-5165, 2022
[32] Chowdhary, G.; Mühlegg, M.; Johnson, E., Exponential parameter and tracking error convergence guarantees for adaptive controllers without persistency of excitation, Internat. J. Control, 87, 8, 1583-1603, 2014 · Zbl 1317.93148
[33] Pan, Y.; Yu, H., Composite learning from adaptive dynamic surface control, IEEE Trans. Autom. Control, 61, 9, 2603-2609, 2015 · Zbl 1359.93231
[34] Pan, Y.; Zhang, J.; Yu, H., Model reference composite learning control without persistency of excitation, IET Control Theory Appl., 10, 16, 1963-1971, 2016
[35] Dong, W.; Farrell, J. A.; Polycarpou, M. M.; Djapic, V.; Sharma, M., Command filtered adaptive backstepping, IEEE Trans. Control Syst. Technol., 20, 3, 566-580, 2011
[36] Hu, J.; Zhang, H., Immersion and invariance based command-filtered adaptive backstepping control of VTOL vehicles, Automatica, 49, 7, 2160-2167, 2013 · Zbl 1364.93394
[37] Marino, R.; Tomei, P., Robust adaptive state-feedback tracking for nonlinear systems, IEEE Trans. Autom. Control, 43, 1, 84-89, 1998 · Zbl 0904.93025
[38] Farrell, J. A.; Polycarpou, M. M., Adaptive Approximation Based Control: Unifying Neural, Fuzzy and Traditional Adaptive Approximation Approaches, 2006, John Wiley & Sons
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.