×

A Talenti-type comparison theorem for the \(p\)-Laplacian on \(\operatorname{RCD}(K,N)\) spaces and some applications. (English) Zbl 07919116

Summary: In this paper, we prove a Talenti-type comparison theorem for the \(p\)-Laplacian with Dirichlet boundary conditions on open subsets of a normalized \(\operatorname{RCD}(K,N)\) space with \(K>0\) and \(N\in(1,\infty)\). The obtained Talenti-type comparison theorem is sharp, rigid and stable with respect to measured Gromov-Hausdorff topology. As an application of such Talenti-type comparison, we establish a sharp and rigid reverse Hölder inequality for first eigenfunctions of the \(p\)-Laplacian and a related quantitative stability result.

MSC:

53C23 Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces
35J92 Quasilinear elliptic equations with \(p\)-Laplacian

References:

[1] Carathéodory, C.; Study, E., Zwei Beweise des Satzes, daßder Kreis unter allen Figuren gleichen Umfanges den größten Inhalt hat, Math. Ann., 68, 133-140, 1909 · JFM 40.0336.01
[2] Faber, G., Beweiss dass unter allen homogenen Membranen von gleicher Fláche und gleicher Spannung die kreisförmgige den leifsten Grundton gibt, Sitz. Bayer Acad. Wiss., 169-172, 1923 · JFM 49.0342.03
[3] Krahn, E., Über eine von Rayleigh formulierte Minimaleigenschaftdes Kreises, Math. Ann., 94, 97-100, 1925 · JFM 51.0356.05
[4] Krahn, E., Über Minimaleigenschaften der Kugel in drei und mehr Dimensionen, Acta Comm. Univ. Tartu (Dorpat) A, 9, 1-44, 1926; UEdgar Krahn, 1894-1961, A Centenary Volume, 139-174, 1994, IOS Press, English transl. (Chapter 6) · JFM 52.0510.03
[5] Mondino, A.; Semola, D., Polya-Szego inequality and Dirichlet \(p\)-spectral gap for non-smooth spaces with Ricci curvature bounded below, J. Math. Pures. Appl., 137, 238-274, 2020 · Zbl 1443.58019
[6] Mondino, A.; Vedovato, M., A Talenti-type comparison theorem for RCD(K, N) spaces and applications, Calc. Var. Partial Differential Equations, 60, 4, 157, 2021 · Zbl 1480.53060
[7] Nobili, Francesco; Violo, Ivan Yuri, Rigidity and almost rigidity of Sobolev inequalities on compact spaces with lower Ricci curvature bounds, Calc. Var. Partial Differential Equations, 61, 5, 65, 2022, Paper No. 180 · Zbl 07565569
[8] Balogh, Zoltán M.; Kristály, Alexandru, Sharp isoperimetric and Sobolev inequalities in spaces with nonnegative Ricci curvature, Math. Ann., 385, 3-4, 1747-1773, 2023 · Zbl 1514.53079
[9] Balogh, Zoltán M.; Kristály, Alexandru; Tripaldi, Francesca, Sharp log-Sobolev inequalities in \(\operatorname{CD} ( 0 , N )\) spaces with applications, J. Funct. Anal., 286, 2, 41, 2024, Paper No. 110217 · Zbl 07794592
[10] Talenti, G., Elliptic equations and rearrangements, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 3, 4, 697-718, 1976 · Zbl 0341.35031
[11] Talenti, G., Nonlinear elliptic equations, rearrangements of functions and orlicz spaces, Ann. Mat. Pura Appl. (4), 120, 160-184, 1979 · Zbl 0419.35041
[12] Alvino, A.; Lions, P.-L.; Trombetti, G., Comparison results for elliptic and parabolic equations via Schwarz symmetrization, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 7, 2, 37-65, 1990 · Zbl 0703.35007
[13] Colladay, D.; Langford, J.; McDonald, P., Comparison results, exit time moments, and eigenvalues on Riemannian manifolds with a lower Ricci curvature bound, J. Geom. Anal., 28, 4, 3906-3927, 2018 · Zbl 1410.58016
[14] Payne, L. E.; Rayner, M. E., An isoperimetric inequality for the first eigenfunction in the fixed membrane problem, Z. Angew. Math. Phys., 23, 13-15, 1972 · Zbl 0241.73080
[15] Gamara, N.; Hasnaoui, A.; Makni, A., Torsional rigidity on compact Riemannian manifolds with lower Ricci curvature bounds, Open Math., 13, 557-570, 2015 · Zbl 1515.35168
[16] Payne, L. E.; Rayner, M. E., Some isoperimetric norm bounds for solutions of the Helmholtz equation, Z. Angew. Math. Phys., 24, 105-110, 1973 · Zbl 0256.35023
[17] Kohler-Jobin; Marie-Thérèse, Isoperimetric monotonicity and isoperimetric inequalities of Payne-Rayner type for the first eigenfunction of the Helmholtz problem, Z. Angew. Math. Phys., 32, 625-646, 1981 · Zbl 0472.35032
[18] Chiti, G., A reverse Hölder inequality for the eigenfunctions of linear second order elliptic operators, Z. Angew. Math. Phys., 33, 143-148, 1982 · Zbl 0508.35063
[19] Ashbaugh, M. S.; Benguria, R. D., A sharp bound for the ratio of the first two Dirichlet eigenvalues of a domain in a hemisphere of S n, Trans. Amer. Math. Soc., 353, 1055-1087, 2001 · Zbl 0981.53023
[20] Benguria, R. D.; Linde, H., A second eigenvalue bound for the Dirichlet Laplacian in hyperbolic space, Duke Math. J., 140, 245-279, 2007 · Zbl 1189.58014
[21] Chen, H., Chiti-type reverse Höder inequality and torsional rigidity under integral Ricci curvature condition, Potential Anal., 2021
[22] Chen, Daguang; Li, Haizhong, Talenti’s comparison theorem for Poisson equation and applications on Riemannian manifold with nonnegative Ricci curvature, J. Geom. Anal., 33, 4, 20, 2023, Paper No. 123 · Zbl 1519.53028
[23] Gunes, Mustafa Alper; Mondino, Andrea, A reverse Hölder inequality for first eigenfunctions of the Dirichlet Laplacian on RCD(K, N) spaces, Proc. Amer. Math. Soc., 151, 1, 295-311, 2023 · Zbl 1507.53043
[24] Cavalletti, Fabio; Milman, Emanuel, The globalization theorem for the curvature-dimension condition, Invent. Math., 226, 1, 1-137, 2021 · Zbl 1479.53049
[25] Rajala, Tapio, Interpolated measures with bounded density in metric spaces satisfying the curvature-dimension conditions of Sturm, J. Funct. Anal., 263, 4, 896-924, 2012 · Zbl 1260.53076
[26] Sturm, K. T., On the geometry of metric measure spaces. II, Acta Math., 196, 1, 133-177, 2006 · Zbl 1106.53032
[27] Gigli, Nicola; Pasqualetto, Enrico, (Lectures on Nonsmooth Differential Geometry. Lectures on Nonsmooth Differential Geometry, SISSA Springer Ser., vol. 2, 2020, Springer: Springer Cham), xi+204, ©2020 · Zbl 1452.53002
[28] Ambrosio, Luigi; Gigli, Nicola; Savaré, Giuseppe, Giuseppe: Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces, Rev. Mat. Iberoam., 29, 3, 969-996, 2013 · Zbl 1287.46027
[29] Cheeger, J., Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal., 9, 3, 428-517, 1999 · Zbl 0942.58018
[30] Hajłasz, P., Sobolev spaces on metric-measure spaces. Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002), (Contemp. Math., vol. 338, 2003, Amer. Math. Soc.: Amer. Math. Soc. Providence), 173-218 · Zbl 1048.46033
[31] Hajłasz, P.; Koskela, P., Sobolev met poincaré, Mem. Am. Math. Soc., 145, 688, x-101, 2000 · Zbl 0954.46022
[32] Shanmugalingam, N., Newtonian spaces: an extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoam., 16, 243-279, 2000 · Zbl 0974.46038
[33] Ambrosio, Luigi; Gigli, Nicola; Savaré, Giuseppe, Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below, Invent. Math., 195, 289-391, 2014 · Zbl 1312.53056
[34] Gigli, Nicola; Nobili, Francesco, A first-order condition for the independence on \(p\) of weak gradients, J. Funct. Anal., 283, 11, 52, 2022, Paper No. 109686 · Zbl 1503.53087
[35] Ambrosio, Luigi; Honda, Shouhei, Local spectral convergence in RCD*(K, N) spaces, Nonlinear Anal., 177, part A, 1-23, 2018 · Zbl 1402.53034
[36] Gigli, N., On the differential structure of metric measure spaces and applications, Mem. Am. Math. Soc., 236, 1113, vi+91, 2015 · Zbl 1325.53054
[37] Miranda, M., Functions of bounded variation on good metric spaces, J. Math. Pures Appl. (9), 82, 8, 975-1004, 2003 · Zbl 1109.46030
[38] Ambrosio, Luigi; Di Marino, Simone, Equivalent definitions of BV space and of total variation on metric measure spaces, J. Funct. Anal., 266, 7, 4150-4188, 2014 · Zbl 1302.26012
[39] Gigli, N.; Han, B.-X., Independence on \(p\) of weak upper gradients on RCD spaces, J. Funct. Anal., 271, 1, 1-11, 2016 · Zbl 1339.53041
[40] Gigli, N.; Mondino, A.; Savaré, G., Convergence of pointed non-compact metric measure spaces and stability of Ricci curvature bounds and heat flows, Proc. Lond. Math. Soc. (3), 111, 5, 1071-1129, 2015 · Zbl 1398.53044
[41] Cavalletti, F.; Mondino, A., Sharp and rigid isoperimetric inequalities in metric-measure spaces with lower Ricci curvature bounds, Invent. Math., 208, 3, 803-849, 2017 · Zbl 1375.53053
[42] Cavalletti, F.; Mondino, A., Isoperimetric inequalities for finite perimeter sets under lower Ricci curvature bounds, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 29, 3, 413-430, 2018 · Zbl 1395.53044
[43] Luigi Ambrosio, Shouhei Honda, New stability results for sequences of metric measure spaces with uniform Ricci bounds from below, in: Measure Theory in Non-Smooth Spaces, in: Partial Differ. Equ. Meas. Theory De Gruyter Open, Warsaw, 2017, pp. 1-51. · Zbl 1485.53051
[44] Brezis, H., (Functional Analysis, Sobolev Spaces and Partial Differential Equations. Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, 2011, Springer: Springer New York), xiv+599 · Zbl 1220.46002
[45] Evans, L. C., (Partial Differential Equations. Partial Differential Equations, Graduate Studies in Mathematics, vol. 19, 2010, American Mathematical Society: American Mathematical Society London) · Zbl 1194.35001
[46] Folland, G., Real Analysis: Modern Techniques and their Applications, 1999, John Wiley Sons · Zbl 0924.28001
[47] Ambrosio, Luigi; Gigli, Nicola; Savaré, Giuseppe, (Giuseppe: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Giuseppe: Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures Math., 2008, ETH Zürich Birkhäuser Verlag: ETH Zürich Birkhäuser Verlag Basel), x+334 · Zbl 1145.35001
[48] Honda, S., Ricci curvature and \(L^p\)-convergence, J. Reine Angew. Math., 705, 85-154, 2015 · Zbl 1338.53064
[49] Ambrosio, Luigi; Gigli, Nicola; Savaré, Giuseppe, Metric measure spaces with Riemannian Ricci curvature bounded from below, Duke Math. J., 163, 1405-1490, 2014 · Zbl 1304.35310
[50] Ambrosio, Luigi; Gigli, Nicola; Savaré, Giuseppe, Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds, Ann. Probab., 43, 339-404, 2015 · Zbl 1307.49044
[51] Savaré, Giuseppe, Self-improvement of the Bakry-Émery condition and Wasserstein contraction of the heat flow in \(\operatorname{RCD} ( K , \infty )\) metric measure spaces, Discrete Contin. Dyn. Syst., 34, 4, 1641-1661, 2014 · Zbl 1275.49087
[52] Mondino, Andrea; Naber, Aaron, Structure theory of metric measure spaces with lower Ricci curvature bounds, J. Eur. Math. Soc. (JEMS), 21, 6, 1809-1854, 2019 · Zbl 1468.53039
[53] Latvala, V.; Marola, N.; Pere, M., Harnack’s inequality for a nonlinear eigenvalue problem on metric spaces, J. Math. Anal. Appl., 321, 2, 793-810, 2006 · Zbl 1160.35406
[54] Cavalletti, Fabio; Mondino, Andrea; Semola, Daniele, Quantitative Obata’s theorem, Anal. PDE, 16, 6, 1389-1431, 2023 · Zbl 1531.58011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.