×

Metric characterizations of projective-metric spaces. (English) Zbl 07918844

Papadopoulos, Athanase (ed.), Surveys in geometry II. Cham: Springer. 225-256 (2024).
Summary: This chapter is concerned with the study of projective-metric spaces, that is, metrics on open subsets of projective space whose geodesics are the intersection of this open set with the lines of the ambient space. The stress is on the effect of additional conditions on these so-called “projective-metric spaces”, which lead to some characterization of special geometries. We rely heavily on the work of Herbert Busemann in this domain. We formulate many open problems on this subject.
For the entire collection see [Zbl 1537.51001].

MSC:

53C60 Global differential geometry of Finsler spaces and generalizations (areal metrics)
53C70 Direct methods (\(G\)-spaces of Busemann, etc.)
51F10 Absolute spaces in metric geometry
52A01 Axiomatic and generalized convexity
51B20 Minkowski geometries in nonlinear incidence geometry
53A40 Other special differential geometries
Full Text: DOI

References:

[1] L.M. Alabdulsada, L. Kozma, On non-positive curvature properties of the Hilbert metric. J. Geom. Anal. 29(1), 569-576 (2019). https://doi.org/10.1007/s12220-018-0011-9 · Zbl 1411.53057
[2] D. Amir, Characterizations of inner product spaces, in Operator Theory: Advances and Applications, vol. 20 (Birkhäuser Verlag, Basel, 1986). https://doi.org/10.1007/978-3-0348-5487-0 · Zbl 0617.46030
[3] M. Audin, Geometry. Universitext (Springer-Verlag, Berlin, 2003). https://doi.org/10.1007/978-3-642-56127-6. Translated from the 1998 French original · Zbl 1043.51001
[4] V. Balestro, H. Martini, Minkowski Geometry-Some Concepts and Recent Developments. Surveys in Geometry I, (Springer, Cham, 2022), pp. 49-95. https://doi.org/10.1007/978-3-030-86695-2_3 · Zbl 1506.52001
[5] D. Bao, S.-S. Chern, Z. Shen, An Introduction to Riemann-Finsler Geometry. Graduate Texts in Mathematics, vol. 200 (Springer, New York, 2000). https://doi.org/10.1007/978-1-4612-1268-3 · Zbl 0954.53001
[6] E. Beltrami, Risoluzione del problema: riportare i punti di una superficie sopra un piano in modo che le linee geodetiche vengano rappresentate da linee rette. Opere I, 262-280 (1865)
[7] G. Bianchi, P.M. Gruber, Characterizations of ellipsoids. Arch. Math. 49(4), 344-350 (1987). https://doi.org/10.1007/BF01210721 · Zbl 0595.52004
[8] W. Blaschke, Integralgeometrie 11. Abh. Math. Sem. Univ. Hamburg 11, 359-366 (1936) · Zbl 0014.11902
[9] L.M. Blumenthal, Theory and Applications of Distance Geometry, 2nd edn. (Chelsea Publishing, New York, 1970) · Zbl 0208.24801
[10] M.R. Bridson, A. Haefliger, Metric Spaces of Non-positive Curvature. Grundlehren der mathematischen Wissenschaften, vol. 319 (Springer, Berlin, 1999). https://doi.org/10.1007/978-3-662-12494-9 · Zbl 0988.53001
[11] S.M. Buckley, K. Falk, D.J. Wraith, Ptolemaic spaces and CAT(0). Glasg. Math. J 51(2), 301-314 (2009). https://doi.org/10.1017/S0017089509004984 · Zbl 1171.53024
[12] H. Busemann, The Geometry of Geodesics (Academic Press, New York, 1955) · Zbl 0112.37002
[13] H. Busemann, Areas in affine spaces. III. The integral geometry of affine area. Rend. Circ. Mat. Palermo 9, 226-242 (1960). https://doi.org/10.1007/BF02854583 · Zbl 0104.17103
[14] H. Busemann, Geometries in which the planes minimize area. Ann. Mat. Pura Appl. 55(4), 171-189 (1961). https://doi.org/10.1007/BF02412083 · Zbl 0112.37204
[15] H. Busemann, Recent Synthetic Differential Geometry. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 54 (Springer, New York, 1970) · Zbl 0194.53701
[16] H. Busemann, Planes with analogues to Euclidean angular bisectors. Math. Scand. 36, 5-11 (1975). https://doi.org/10.7146/math.scand.a-11556 · Zbl 0299.50002
[17] H. Busemann, Remark on: “Planes with analogues to Euclidean angular bisectors” (Math. Scand. 36 (1975), 5-11). Math. Scand. 38(1), 81-82 (1976). https://doi.org/10.7146/math.scand.a-11618 · Zbl 0324.50001
[18] H. Busemann, Problem IV: Desarguesian Spaces. Mathematical Developments Arising from Hilbert Problems (Proceedings of Symposia in Pure Mathematics, Northern Illinois University, De Kalb, 1974) (American Mathematical Society, Providence, 1976), pp. 131-141. Proc. Sympos. Pure Math., Vol. XXVIII · Zbl 0352.50010
[19] H. Busemann, P.J. Kelly, Projective Geometry and Projective Metrics (Academic Press, New York, 1953) · Zbl 0052.37305
[20] H. Busemann, W. Mayer, On the foundations of calculus of variations. Trans. Am. Math. Soc. 49, 173-198 (1941). https://doi.org/10.2307/1990020 · Zbl 0024.41703
[21] H. Busemann, B.B. Phadke, Minkowskian geometry, convexity conditions and the parallel axiom. J. Geom. 12(1), 17-33 (1979). https://doi.org/10.1007/BF01920230 · Zbl 0386.53048
[22] J.W. Cannon, W.J. Floyd, R. Kenyon, W.R. Parry, Hyperbolic geometry, in Flavors of Geometry (Cambridge University Press, Cambridge, 1997), pp. 59-115 · Zbl 0899.51012
[23] A. Cap, M.G. Cowling, F. de Mari, M. Eastwood, R. McCallum, The Heisenberg group, SL(3,\( \mathbb{R})\), and rigidity, in Harmonic Analysis, Group Representations, Automorphic Forms and Invariant Theory. Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore, vol. 12 (World Scientific, Hackensack, 2007), pp. 41-52. https://doi.org/10.1142/9789812770790_0002 · Zbl 1390.22009
[24] C. Charitos, I. Papadoperakis, G. Tsapogas, Convexity of asymptotic geodesics in Hilbert Geometry. Beitr. Algebra Geom. 63, 809-828 (2021). Posted on 10 October 2021, https://doi.org/10.1007/s13366-021-00601-3 · Zbl 1512.53040
[25] H.S.M. Coxeter, Introduction to Geometry. Wiley Classics Library, 2nd edn. (Wiley, New York, 1989). https://archive.org/details/introductiontogeometry2ndedcoxeter1969/page/n1/mode/2up. Reprint of the 1969 edition
[26] H.S.M. Coxeter, S.L. Greitzer, Geometry Revisited. New Mathematical Library, vol. 19 (The Mathematical Association of America, New York, 1967). https://www.maa.org/press/maa-reviews/geometry-revisited · Zbl 0166.16402
[27] G. Csima, J. Szirmai, Isoptic curves of conic sections in constant curvature geometries. Math. Commun. 19(2), 277-290 (2014). https://hrcak.srce.hr/129576 · Zbl 1311.53003
[28] P. Erdos, Problem 3740. Am. Math. Month. 42, 396 (1935). https://doi.org/10.2307/2301373
[29] L. Euler, Geometrica et sphaerica quaedam. Memoir. l’Acad. Sci. Saint-Petersbourg 5, 96-114 (1815). http://eulerarchive.maa.org/docs/originals/E749.pdf
[30] K.J. Falconer, On the equireciprocal point problem. Geom. Ded. 14(2), 113-126 (1983). https://doi.org/10.1007/BF00181619 · Zbl 0523.52004
[31] K.J. Falconer, Differentiation of the limit mapping in a dynamical system. J. Lond. Math. Soc. 27(2), 356-372 (1983). https://doi.org/10.1112/jlms/s2-27.2.356 · Zbl 0488.58021
[32] T. Foertsch, A. Lytchak, V. Schroeder, Nonpositive curvature and the Ptolemy inequality. Int. Math. Res. Not. IMRN 22, Art. ID rnm100, 15 (2007). https://doi.org/10.1093/imrn/rnm100. [Erratum in Int. Math. Res. Not.IMRN 24(2007) Art. ID rnm160, 1] · Zbl 1135.53055
[33] R.J. Gardner, Geometric Tomography, 2nd edn., Encyclopedia of Mathematics and its Applications, vol. 58 (Cambridge University Press, New York, 2006). https://doi.org/10.1017/CBO9781107341029 · Zbl 1102.52002
[34] M. Ghandehari, H. Martini, On the Erdős-Mordell inequality for normed planes and spaces. Stud. Sci. Math. Hungar. 55(2), 174-189 (2018). https://doi.org/10.1007/s00022-007-1961-4 · Zbl 1413.46018
[35] P.P. Gilmartin, Showing the shortest routes - great circles, in Matching the Map Projection to the Need, ed. by A.H. Robinson, J.P. Snyder. Special Publication …of the American Cartographic Association, vol. 3 (American Congress on Surveying and Mapping, Bethesda, 1991), pp. 18-19
[36] R. Guo, Characterizations of hyperbolic geometry among hilbert geometries, in Handbook of Hilbert Geometry. IRMA Lectures in Mathematics and Theoretical Physics, vol. 22 (European Mathematical Society, Zürich, 2014), pp. 147-158. http://sites.science.oregonstate.edu/ guoren/docs/survey-Hilbert.pdf · Zbl 1310.51001
[37] G. Hamel, Über die Geometrieen, in denen die Geraden die Kürzesten sind (in German). Math. Ann. 57(2), 231-264 (1903). https://doi.org/10.1007/BF01444348 · JFM 34.0527.01
[38] D. Hilbert, Über die gerade Linie als kürzeste Verbindung zweier Punkte (in German). Math. Ann. 46, 91-96 (1895). https://doi.org/10.1007/BF02096204. · JFM 26.0540.02
[39] D. Hilbert, Mathematische probleme. Nachr. Ges. Wiss. Göttingen Math.-Phys. Kl. 253-297 (1900). http://aleph0.clarku.edu/ djoyce/hilbert/problems.html. [Archiv der Math. Physik (3)1 (1901), 44-63, 213-237] · JFM 32.0084.05
[40] J.W.P. Hirschfeld, Projective Geometries Over Finite Fields. Oxford Mathematical Monographs (The Clarendon Press/Oxford University Press, New York, 1979) · Zbl 0418.51002
[41] W.-Y. Hsiang, On the laws of trigonometries of two-point homogeneous spaces. Ann. Global Anal. Geom. 7(1), 29-45 (1989). https://doi.org/10.1007/BF00137400 · Zbl 0695.53036
[42] N.V. Ivanov, Arnol’d, the Jacobi identity, and orthocenters. Am. Math. Month. 118(1), 41-65 (2011). https://doi.org/10.4169/amer.math.monthly.118.01.041 · Zbl 1211.51008
[43] D.C. Kay, Ptolemaic metric spaces and the characterization of geodesics by vanishing metric curvature. Ph.D. Thesis, Michigan State University (1963)
[44] D.C. Kay, The ptolemaic inequality in Hilbert geometries. Pac. J. Math. 21, 293-301 (1967). https://doi.org/10.2140/pjm.1967.21.293 · Zbl 0147.22406
[45] J.B. Kelly, Power points. Am. Math. Month. 53(7), 395-396 (1946). https://doi.org/10.2307/2305862
[46] P.J. Kelly, L.J. Paige, Symmetric perpendicularity in Hilbert geometries. Pac. J. Math. 2, 319-322 (1952). https://projecteuclid.org/euclid.pjm/1103051777 · Zbl 0048.13302
[47] P. Kelly, E.G. Straus, Curvature in Hilbert geometries. Pac. J. Math. 8, 119-125 (1958). https://projecteuclid.org/journalArticle/Download?urlId=pjm · Zbl 0081.16401
[48] P. Kelly, E.G. Straus, On the projective centres of convex curves. Can. J. Math. 12, 568-581 (1960). https://doi.org/10.4153/CJM-1960-050-7 · Zbl 0115.15402
[49] P. Kelly, E.G. Straus, Curvature in Hilbert geometries. II. Pac. J. Math. 25, 549-552 (1968). https://projecteuclid.org/journalArticle/Download?urlId=pjm · Zbl 0169.24605
[50] G. Korchmáros, J. Kozma, Regular polygons in higher dimensional Euclidean spaces. J. Geom. 105(1), 43-55 (2014). https://doi.org/10.1007/s00022-013-0191-1 · Zbl 1300.51008
[51] J. Kozma, Characterization of Euclidean geometry by existence of circumcenter or orthocenter. Acta Sci. Math. 81(3-4), 685-698 (2015). https://doi.org/10.14232/actasm-015-518-0
[52] J. Kozma, Á. Kurusa, Hyperbolic is the only Hilbert geometry having circumcenter or orthocenter generally. Beitr. Algebra Geom. 57(1), 243-258 (2016). https://doi.org/10.1007/s13366-014-0233-3 · Zbl 1336.53022
[53] Á. Kurusa, Support theorems for totally geodesic Radon transforms on constant curvature spaces. Proc. Am. Math. Soc. 122(2), 429-435 (1994). https://doi.org/10.2307/2161033 · Zbl 0852.44001
[54] Á. Kurusa, Conics in Minkowski geometries. Aequationes Math. 92(5), 949-961 (2018). https://doi.org/10.1007/s00010-018-0592-1 · Zbl 1400.51003
[55] Á. Kurusa, Ceva’s and Menelaus’ theorems in projective-metric spaces. J. Geom. 110(2), 39, 12 (2019). https://doi.org/10.1007/s00022-019-0495-x · Zbl 1428.51010
[56] Á. Kurusa, Curvature in Hilbert geometries. Int. J. Geom. 9(1), 85-94 (2020) https://ijgeometry.com/wp-content/uploads/2020/03/10..pdf · Zbl 1449.53005
[57] Á. Kurusa, Hilbert geometries with Riemannian points. Ann. Mat. Pura Appl. 199(2), 809-820 (2020). https://doi.org/10.1007/s10231-019-00901-5 · Zbl 1447.53018
[58] Á. Kurusa, Quadratic ellipses in Minkowski geometries. Aequationes Math. 96, 567-578 (2022). https://doi.org/10.1007/s00010-021-00839-1 · Zbl 1490.51002
[59] Á. Kurusa, Quadratic ellipses in Hilbert geometries. Aequationes Math. 96, 567-578 (2022) · Zbl 1490.51002
[60] Á. Kurusa, Supplement to “Metric Characterization of Projective-metric Spaces”, In: Surveys in Geometry II, Springer, Cham, 2024. posted on 2023, 1-11 (2024). https://doi.org/10.48550/arXiv.2312
[61] Á. Kurusa, J. Kozma, Euler’s ratio-sum formula in projective-metric spaces. Beitr. Algebra Geom. 60(2), 379-390 (2019). https://doi.org/10.1007/s13366-018-0422-6 · Zbl 1419.51012
[62] Á. Kurusa, J. Kozma, Quadratic hyperbolas in Hilbert geometries. Ann. Matematica Pura Appl. 199, 809-820 (2021) · Zbl 1447.53018
[63] Á. Kurusa, J. Kozma, Quadratic hyperboloids in Minkowski geometries. Mediterr. J. Math. 19, 106 (2022). https://doi.org/10.1007/s00009-022-02002-9 · Zbl 1486.51004
[64] G.W. Leibniz, Mathematische Schriften (zweite Abteilung I, Berlin, 1849)
[65] A.M. Mahdi, Quadratic conics in hyperbolic geometry. Int. J. Geom. 8(2), 60-69 (2019). https://ijgeometry.com/product/ahmed-mohsin-mahdi-quadraticconics-in-hyperbolic-geometry/ · Zbl 1449.51009
[66] A.M. Mahdi, Conics on the sphere. Int. J. Geom. 9(2), 5-14 (2020). https://ijgeometry.com/product/ahmed-mohsin-mahdi-conics-on-the-sphere/ · Zbl 1513.51046
[67] G.E. Martin, The Foundations of Geometry and the Non-Euclidean Plane. Undergraduate Texts in Mathematics (Springer, New York, 1996). https://doi.org/10.1007/978-1-4612-5725-7. Corrected third printing of the 1975 original
[68] H. Martini, K.J. Swanepoel, Antinorms and Radon curves. Aequationes Math. 72(1-2), 110-138 (2006). https://doi.org/10.1007/s00010-006-2825-y · Zbl 1108.52005
[69] H. Martini, K. J. Swanepoel, G. Weıss, The geometry of Minkowski spaces—a survey. I. Expo. Math. 19(2), 97-142 (2001). https://doi.org/10.1016/S0723-0869(01)80025-6. [Erratum in Expo. Math.19:4 (2001), 364; doi: 10.1016/S0723-0869(01)80021-9] · Zbl 0984.52004
[70] L.A. Masal’tsev, Incidence theorems in spaces of constant curvature. Ukrain. Geom. Sb. 35, 67-74, 163 (1992). https://doi.org/10.1007/BF01249519 (Russian, with Russian summary); English transl., J. Math. Sci.72 (1994), no. 4, 3201-3206 · Zbl 0835.51006
[71] S. Mazur, S. Ulam, Sur le transformations isométriques d’espaces vectoriels, normés. C. R. Acad. Sci. Paris 194, 946-948 (1932). https://gallica.bnf.fr/ark:/12148/bpt6k31473/f950.item · Zbl 0004.02103
[72] H. Minkowski, Sur les propriétés des nombres entiers qui sont dérivées de l’intuition de l’espace. Nouvelles Ann. Math. 3e série 15, 393-403 (1896). http://eudml.org/doc/101072. Also in Gesammelte Abhandlungen, 1. Band, XII, pp. 271-277 · JFM 27.0133.01
[73] L.J. Mordell, D.F. Barrow, Solution to 3740. Am. Math. Month. 44, 252-254 (1937). https://doi.org/10.2307/2300713
[74] A. Oppenheim, Some inequalities for a spherical triangle and an internal point. Publ. Fac. Electrotech. Univ. Belgrade, Ser. Math. Phys. 203, 13-16 (1967) · Zbl 0171.41301
[75] A. Papadopoulos, Metric Spaces, Convexity and Non-positive Curvature. IRMA Lectures in Mathematics and Theoretical Physics, vol. 6, 2nd edn. (European Mathematical Society (EMS), Zürich, 2014). https://doi.org/10.4171/132 · Zbl 1296.53007
[76] A. Papadopoulos, M. Troyanov (eds.), Handbook of Hilbert Geometry. IRMA Lectures in Mathematics and Theoretical Physics, vol. 22 (European Mathematical Society (EMS), Zurich, 2014). https://doi.org/10.4171/147 · Zbl 1310.51001
[77] B.B. Phadke, Conditions for a plane projective metric to be a norm. Bull. Austral. Math. Soc. 9, 49-54 (1973). https://doi.org/10.1017/S0004972700042854 · Zbl 0255.50007
[78] B.B. Phadke, The theorem of Desargues in planes with analogues to Euclidean angular bisectors. Math. Scand. 39(2), 191-194 (1976). https://doi.org/10.7146/math.scand.a-11656 · Zbl 0345.53045
[79] A.V. Pogorelov, A complete solution of Hilbert’s fourth problem. Soviet Math. Dokl. 14, 46-49. [Dokl. Akad. Nauk SSSR208 (1973), 48-51] · Zbl 0285.52007
[80] J. Radon, Über eine besondere Art ebener Kurven. Ber. Verh. Sächs. Ges. Wiss. Leipzig. Math.-Phys. Kl. 68, 23-28 (1916)
[81] B. Segre, Ovals in a finite projective plane. Can. J. Math. 7, 414-416 (1955). https://doi.org/10.4153/CJM-1955-045-x · Zbl 0065.13402
[82] I.J. Schoenberg, A remark on M. M. Day’s characterization of inner-product spaces and a conjecture of L. M. Blumenthal. Proc. Am. Math. Soc. 3, 961-964 (1952). https://doi.org/10.2307/2031742 · Zbl 0049.08301
[83] V. Soltan, Characteristic properties of ellipsoids and convex quadrics. Aequationes Math. 93(2), 371-413 (2019). https://doi.org/10.1007/s00010-018-0620-1 · Zbl 1433.52001
[84] Z.I. Szabó, Hilbert’s fourth problem. I. Adv. Math. 59(3), 185-301 (1986). https://doi.org/10.1016/0001-8708(86)90056-3 · Zbl 0608.53062
[85] Z. Szilasi, Two applications of the theorem of Carnot. Ann. Math. Inf. 40, 135-144 (2012). https://ami.uni-eszterhazy.hu/uploads/papers/finalpdf/AMI_40_from135to144.pdf · Zbl 1274.51015
[86] L. Tamássy, K. Bélteky, On the coincidence of two kinds of ellipses in Minkowskian spaces and in Finsler planes. Publ. Math. Debrecen 31(3-4), 157-161 (1984) · Zbl 0563.53020
[87] L. Tamássy, K. Bélteky, On the coincidence of two kinds of ellipses in Riemannian and in Finsler spaces, in Topics in Differential Geometry, Vols. I-II (Debrecen, 1984). Colloquia Mathematica Societatis János Bolyai, vol. 46 (North-Holland, Amsterdam, 1988), pp. 1193-1200 · Zbl 0639.53033
[88] A.C. Thompson, Minkowski Geometry. Encyclopedia of Mathematics and its Applications, vol. 63 (Cambridge University Press, Cambridge, 1996). https://doi.org/10.1017/CBO9781107325845 · Zbl 0868.52001
[89] L. Zuccheri, Characterization of the circle by equipower properties. Arch. Math. 58(2), 199-208 (1992). https://doi.org/10.1007/BF01191886 · Zbl 0726.52002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.