×

Influence of gravity on the vibration characteristics of a geometrically nonlinear McPherson-suspension model. (English) Zbl 07918276

Summary: We present a kinetodynamic quarter-car model for passenger cars with McPherson suspension, which includes geometric nonlinearity due to the constraints imposed by the interconnection of elements. We retain flexibility in the strut as well as the tire, and use the simplest linear constitutive relationship for these flexible members. Accordingly, our tire is modeled using only two springs with linear stiffnesses; one is aligned along the road surface while the other is perpendicular to it. The strut is modeled using a linear traditional Kelvin-Voigt element, while other suspension elements are assumed to be rigid. The equations of motion for the resulting two-degrees-of-freedom system are derived using the Lagrangian formulation, including the potential energy associated with gravity. The gravitational forces result not only in constant external force but also appear as parameters in the coefficient of various terms involving the generalized coordinates. We validate our analytical model by comparing the vibration characteristics of the linearized model as well as the time-domain results of the fully nonlinear model against comparable models in the multibody dynamics software MSC Adams/View. We study the importance of geometric nonlinearity in capturing the true response of the vehicle body by comparing results from the fully nonlinear model against those from the linearized model both for harmonic as well as standard road inputs. Finally, we highlight the importance of including gravity in our formulation by pointing out the inadequacy of the models without gravity in capturing the true vibration characteristics (both linear and nonlinear).

MSC:

70E55 Dynamics of multibody systems
Full Text: DOI

References:

[1] Cao, D.; Song, X.; Ahmadian, M., Editors’ perspectives: road vehicle suspension design, dynamics, and control, Veh. Syst. Dyn., 49, 1-2, 3-28, 2011 · doi:10.1080/00423114.2010.532223
[2] Ulsoy, A. G.; Peng, H.; Çakmakci, M., Automotive Control Systems, 2012, Cambridge: Cambridge University Press, Cambridge · doi:10.1017/CBO9780511844577
[3] Limebeer, D. J.; Massaro, M., Dynamics and Optimal Control of Road Vehicles, 2018, Oxford: Oxford University Press, Oxford · Zbl 1397.49001 · doi:10.1093/oso/9780198825715.001.0001
[4] Türkay, S.; Akçay, H., A study of random vibration characteristics of the quarter-car model, J. Sound Vib., 282, 1-2, 111-124, 2005 · doi:10.1016/j.jsv.2004.02.049
[5] Gopala Rao, L. V.V.; Narayanan, S., Preview control of random response of a half-car vehicle model traversing rough road, J. Sound Vib., 310, 1-2, 352-365, 2008 · doi:10.1016/j.jsv.2007.08.004
[6] Bouazara, M.; Richard, M. J., An optimization method designed to improve 3-d vehicle comfort and road holding capability through the use of active and semi-active suspensions, Eur. J. Mech. A, Solids, 20, 3, 509-520, 2001 · Zbl 0997.70025 · doi:10.1016/S0997-7538(01)01138-X
[7] Shekhar, N. C.; Hatwal, H.; Mallik, A. K., Performance of non-linear isolators and absorbers to shock excitations, J. Sound Vib., 227, 2, 293-307, 1999 · doi:10.1006/jsvi.1999.2346
[8] Jiregna, I.; Sirata, G., A review of the vehicle suspension system, J. Mech. Energy Eng., 4, 2, 109-114, 2020 · doi:10.30464/jmee.2020.4.2.109
[9] Fallah, M. S.; Bhat, R.; Xie, W. F., New model and simulation of macpherson suspension system for ride control applications, Veh. Syst. Dyn., 47, 2, 195-220, 2009 · doi:10.1080/00423110801956232
[10] Silveira, M.; Pontes, B. R. Jr.; Balthazar, J. M., Use of nonlinear asymmetrical shock absorber to improve comfort on passenger vehicles, J. Sound Vib., 333, 7, 2114-2129, 2014 · doi:10.1016/j.jsv.2013.12.001
[11] Sharp, R. S.; Crolla, D. A., Road vehicle suspension system design-a review, Veh. Syst. Dyn., 16, 3, 167-192, 1987 · doi:10.1080/00423118708968877
[12] Abebe, B. A.; Santhosh, J.; Ahmed, A. A.; Murugan, P.; Ashok, N., Non-linear mathematical modelling for quarter car suspension model, Int. J. Emerg. Technol., 11, 5, 536-544, 2020
[13] Kim, C.; Ro, P. I., Reduced-order modelling and parameter estimation for a quarter-car suspension system, Proc. Inst. Mech. Eng., Part D, J. Automob. Eng., 214, 8, 851-864, 2000 · doi:10.1177/095440700021400804
[14] Suciu, C. V.; Tobiishi, T.; Mouri, R., Modeling and simulation of a vehicle suspension with variable damping versus the excitation frequency, J. Telecommun. Inf. Technol., 1, 83-89, 2012
[15] Zhao, Z. Y.; Fan, Z. H.; Zhang, J. J.; Xia, Z. Q., Research on ride comfort of nonlinear vehicle suspension, Advanced Materials Research, 2013
[16] Dwivedi, V. D.; Wahi, P., Influence of bushing flexibility and its constitutive behavior on the performance of suspension system, J. Sound Vib., 538, 2022 · doi:10.1016/j.jsv.2022.117240
[17] Car detailing and body denting center (2002). https://brotomotiv.in/. (Accessed on: March 05, 2021)
[18] Mántaras, D. A.; Luque, P.; Vera, C., Development and validation of a three-dimensional kinematic model for the mcpherson steering and suspension mechanisms, Mech. Mach. Theory, 39, 6, 603-619, 2004 · Zbl 1143.70332 · doi:10.1016/j.mechmachtheory.2003.12.006
[19] Reddy, K. V.; Kodati, M.; Chatra, K.; Bandyopadhyay, S., A comprehensive kinematic analysis of the double wishbone and macpherson strut suspension systems, Mech. Mach. Theory, 105, 441-470, 2016 · doi:10.1016/j.mechmachtheory.2016.06.001
[20] Schmeitz, A.J.C.: A Semi-Empirical Three-Dimensional Model of the Pneumatic Tyre Rolling over Arbitrarily Uneven Road Surfaces. PhD Thesis, Delft University of Technology, Delft, Netherland (2004)
[21] Lugner, P.; Pacejka, H.; Plöchl, M., Recent advances in tyre models and testing procedures, Veh. Syst. Dyn., 43, 6-7, 413-426, 2005 · doi:10.1080/00423110500158858
[22] Miller, L. R., Tuning passive, semi-active, and fully active suspension systems, Proceedings of the 27th IEEE Conference on Decision and Control, 1988
[23] Gillespie, T.D., Karamihas, S.M., Cebon, D., Sayers, M.W., Nasim, M.A., Hansen, W., Ehsan, N.: Effects of heavy-vehicle characteristics on pavement response and performance. Technical report, NCHRP Report, (1991)
[24] Balike, K. P.; Rakheja, S.; Stiharu, I., Development of kinetodynamic quarter-car model for synthesis of a double wishbone suspension, Veh. Syst. Dyn., 49, 1-2, 107-128, 2011 · doi:10.1080/00423110903401905
[25] Yu, C. C.; Chiu, C. C., Ride responses of macpherson suspension systems, MATEC Web of Conferences, 2017
[26] Hurel, J.; Mandow, A.; García-Cerezo, A., Kinematic and dynamic analysis of the mcpherson suspension with a planar quarter-car model, Veh. Syst. Dyn., 51, 9, 1422-1437, 2013 · doi:10.1080/00423114.2013.804937
[27] Dutta, S.; Choi, S. B., A nonlinear kinematic and dynamic modeling of macpherson suspension systems with a magneto-rheological damper, Smart Mater. Struct., 25, 3, 2016 · doi:10.1088/0964-1726/25/3/035003
[28] Dehbari, S.; Marzbanrad, J., Kinematic and dynamic analysis for a new macpherson strut suspension system, Mech. Mech. Eng., 22, 4, 1223-1238, 2020 · doi:10.2478/mme-2018-0094
[29] Dwivedi, V.D.: Understanding the Role of Bushing Flexibility and Geometric Nonlinearity on Passenger Ride Comfort Using Quarter-Car Models. PhD Thesis, Indian Institute of Technology Kanpur, Kanpur, India (2023)
[30] Jazar, R. N., Vehicle Dynamics: Theory and Application, 2017, New York: Springer, New York · doi:10.1007/978-1-4614-8544-5
[31] Maple code to find the governing equations of motion of two dimensional planar quarter-car model of McPherson suspension and its dynamic analysis. https://drive.google.com/drive/folders/14r7nmd6ZSSU1-TmotnY6n5eqDAdVsJTL?usp=sharing. (Accessed on: September 20, 2022)
[32] Adams Support Home Page. https://simcompanion.hexagon.com/customers/s/article/Adams-Support-Home-Page. (Accessed on: September 20, 2022)
[33] Nandakumar, K.; Chatterjee, A., Resonance, parameter estimation, and modal interactions in a strongly nonlinear benchtop oscillator, Nonlinear Dyn., 40, 2, 149-167, 2005 · Zbl 1244.74066 · doi:10.1007/s11071-005-4228-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.