×

Quantum gravity inspired nonlocal quantum dynamics preserving the classical limit. (English) Zbl 07918187

Summary: Several approaches to quantum gravity lead to nonlocal modifications of fields’ dynamics. This, in turn, can give rise to nonlocal modifications of quantum mechanics at non-relativistic energies. Here, we analyze the nonlocal Schrödinger evolution of a quantum harmonic oscillator in one such scenario, where the problem can be addressed without the use of perturbation theory. We demonstrate that although deviations from standard quantum predictions occur at low occupation numbers, where they could potentially be detected or constrained by high-precision experiments, the classical limits of quantum probability densities and free energy remain unaffected up to energies comparable with the nonlocality scale. These results provide an example of nonlocal quantum dynamics compatible with classical predictions, suggesting massive quantum objects as a promising avenue for testing some phenomenological aspects of quantum gravity.
{© 2024 The Author(s). Published by IOP Publishing Ltd}

MSC:

83C45 Quantization of the gravitational field

References:

[1] Sorkin, R. D.; Oriti, D., Approaches to Quantum Gravity: Towards a New Understanding of Space and Time, 2006, Cambridge University Press
[2] Belenchia, A.; Benincasa, D. M T.; Liberati, S., Nonlocal scalar quantum field theory from causal sets, J. High Energy Phys., JHEP03(2015)036, 2015 · Zbl 1388.81249 · doi:10.1007/JHEP03(2015)036
[3] Eliezer, D. A.; Woodard, R. P., The problem of nonlocality in string theory, Nucl. Phys. B, 325, 389, 1989 · doi:10.1016/0550-3213(89)90461-6
[4] Taylor, W.; Zwiebach, B., D-branes, tachyons and string field theory, Strings, Branes and Extra Dimensions: Tasi 2001: Proceedings, 641-759, 2003, World Scientific · Zbl 1079.81058 · doi:10.1142/9789812702821_0012
[5] Szabo, R. J., Quantum field theory on noncommutative spaces, Phys. Rep., 378, 207, 2003 · Zbl 1042.81581 · doi:10.1016/S0370-1573(03)00059-0
[6] Gambini, R.; Pullin, J., Emergence of stringlike physics from Lorentz invariance in loop quantum gravity, Int. J. Mod. Phys. D, 23, 2014 · doi:10.1142/S0218271814420231
[7] Ostrogradsky, M., Mémoires sur les equations différentielles, relatives au probléme des isopérimétres, Mem. Acad. St. Petersbourg, 6, 385-517, 1850
[8] Barnaby, N.; Kamran, N., Dynamics with infinitely many derivatives: the initial value problem, J. High Energy Phys., JHEP02(2008)008, 2008 · doi:10.1088/1126-6708/2008/02/008
[9] Belenchia, A.; Benincasa, D. M T.; Liberati, S.; Marin, F.; Marino, F.; Ortolan, A., Testing quantum gravity induced nonlocality via optomechanical quantum oscillators, Phys. Rev. Lett., 116, 2016 · doi:10.1103/PhysRevLett.116.161303
[10] Biswas, T.; Okada, N., Towards LHC physics with nonlocal standard model, Nucl. Phys. B, 898, 113, 2015 · Zbl 1329.81392 · doi:10.1016/j.nuclphysb.2015.06.023
[11] Belenchia, A.; Benincasa, D. M T.; Martin-Martinez, E.; Saravani, M., Low energy signatures of nonlocal field theories, Phys. Rev. D, 94, 2016 · doi:10.1103/PhysRevD.94.061902
[12] Belenchia, A.; Benincasa, D. M T.; Liberati, S.; Marin, F.; Marino, F.; Ortolan, A., Tests of quantum-gravity-induced nonlocality via optomechanical experiments, Phys. Rev. D, 95, 2017 · doi:10.1103/PhysRevD.95.026012
[13] Belenchia, A.; Benincasa, D.; Marin, F.; Marino, F.; Ortolan, A.; Paternostro, M.; Liberati, S., Tests of quantum gravity-induced non-locality: Hamiltonian formulation of a non-local harmonic oscillator, Class. Quantum Grav., 36, 2019 · Zbl 1477.83024 · doi:10.1088/1361-6382/ab2c0a
[14] Hossenfelder, S., Minimal length scale scenarios for quantum gravity, Living Rev. Relativ., 16, 2, 2013 · Zbl 1320.83004 · doi:10.12942/lrr-2013-2
[15] Tong, D2006Part III Cambridge University Mathematics Tripos, Michaelmas(avilable at: www.damtp.cam.ac.uk/user/tong/qft.html)
[16] Bollini, C.; Giambiagi, J., Lagrangian procedures for higher order field equations, Rev. Bras. Fis., 17, 14-30, 1987
[17] Koshelev, A. S., Modified non-local gravity, Rom. J. Phys., 57, 894, 2012
[18] Calcagni, G.; Modesto, L., Nonlocal quantum gravity and M-theory, Phys. Rev. D, 91, 2015 · doi:10.1103/PhysRevD.91.124059
[19] Bild, M.; Fadel, M.; Yang, Y.; von Lüpke, U.; Martin, P.; Bruno, A.; Chu, Y., Schrödinger cat states of a 16-microgram mechanical oscillator, Science, 380, 274, 2023 · doi:10.1126/science.adf7553
[20] Liberati, S., Tests of Lorentz invariance: a 2013 update, Class. Quantum Grav., 30, 2013 · Zbl 1273.83002 · doi:10.1088/0264-9381/30/13/133001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.