×

Optimum solution of \((k, \gimel)\)-Hilfer FDEs by \(\mathcal{A}\)-condensing operators and the incorporated measure of noncompactness. (English) Zbl 07917606

MSC:

34A08 Fractional ordinary differential equations
26A33 Fractional derivatives and integrals
47H10 Fixed-point theorems
47H08 Measures of noncompactness and condensing mappings, \(K\)-set contractions, etc.
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.

References:

[1] Toledano, J. M.A.; Benavides, T. D.; Acedo, G. L., Measures of Noncompactness in Metric Fixed Point Theory, 1997, Dordrecht: Springer, Dordrecht · Zbl 0885.47021 · doi:10.1007/978-3-0348-8920-9
[2] Gabeleh, M.; Malkowsky, E.; Mursaleen, M.; Rakočević, V., A new survey of measures of noncompactness and their applications, Axioms, 11, 6, 2022 · doi:10.3390/axioms11060299
[3] Samei, M. E., Employing Kuratowski measure of noncompactness for positive solutions of system of singular fractional q-differential equations with numerical effects, Filomat, 34, 9, 1-19, 2020 · doi:10.1186/10.2298/FIL2009971S
[4] Zeidler, E., Nonlinear Functional Analysis and Its Applications, 1986, New York: Springer, New York · Zbl 0583.47050 · doi:10.1007/978-1-4612-4838-5
[5] Schauder, J., Der fixpunktsatz in funktionalraumen, Stud. Math., 2, 171-180, 1930 · JFM 56.0355.01 · doi:10.4064/sm-2-1-171-180
[6] Banaś, J.; Mursaleen, M., Sequence Spaces and Measures of Noncompactness with Applications to Differential and Integral Equations, 2014, New Delhi: Springer, New Delhi · Zbl 1323.47001 · doi:10.1007/978-81-322-1886-9
[7] Deimling, K., Nonlinear Functional Analysis, 1985, Berlin: Springer, Berlin · Zbl 0559.47040 · doi:10.1007/978-3-662-00547-7
[8] Darbo, G., Punti uniti in transformazioni a codominio non compatto, Rend. Semin. Mat. Univ. Padova, 24, 84-92, 1955 · Zbl 0064.35704
[9] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations, 2006, Amsterdam: Elsevier, Amsterdam · Zbl 1092.45003
[10] Sabatier, J. A.T. M.J.; Agrawal, O. P.; Machado, J. T., Advances in Fractional Calculus, 2007, Dordrecht: Springer, Dordrecht · Zbl 1116.00014 · doi:10.1007/978-1-4020-6042-7
[11] Furati, K. M.; Kassim, M. D.; Tatar, N. E., Existence and uniqueness for a problem involving Hilfer fractional derivative, Comput. Math. Appl., 64, 6, 1616-1626, 2012 · Zbl 1268.34013 · doi:10.1016/j.camwa.2012.01.009
[12] Sousa, J. V.D. C.; Oliveira, E. C.D., On the ψ-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 60, 72-91, 2018 · Zbl 1470.26015 · doi:10.1016/j.cnsns.2018.01.005
[13] Haque, I.; Ali, J.; Mursaleen, M., Existence of solutions for an infinite system of Hilfer fractional boundary value problems in tempered sequence spaces, Alex. Eng. J., 65, 575-583, 2023 · doi:10.1016/j.aej.2022.09.032
[14] Haque, I.; Ali, J.; Mursaleen, M., Controllability of ψ-Hilfer fractional differential equations with infinite delay via measure of noncompactness, Nonlinear Anal., Model. Control, 29, 2, 379-399, 2023 · Zbl 1542.34061 · doi:10.15388/namc.2024.29.34706
[15] Mursaleen, M.; Savaş, E., Solvability of an infinite system of fractional differential equations with p-Laplacian operator in a new tempered sequence space, J. Pseudo-Differ. Oper. Appl., 14, 2023 · Zbl 1532.34026 · doi:10.1007/s11868-023-00552-4
[16] Haddouchi, F.; Samei, M. E.; Rezapour, M. E., Study of a sequential ψ-Hilfer fractional integro-differential equations with nonlocal bcs, J. Pseudo-Differ. Oper. Appl., 14, 2023 · Zbl 1526.45007 · doi:10.1007/s11868-023-00555-1
[17] Mursaleen, M. A., A note on matrix domains of Copson matrix of order α and compact operators, Iran. J. Sci., 15, 7, 2022 · Zbl 1504.26061 · doi:10.1142/S1793557122501406
[18] Thabet, S. T.M.; Vivas-Cortez, M.; Kedim, I.; Samei, M. E.; Iadh Ayari, M., Solvability of ϱ-Hilfer fractional snap dynamic system on unbounded domains, Fractal Fract., 7, 8, 2023 · doi:10.3390/fractalfract7080607
[19] Cai, Q̧. B.; Sharma, S. K.; Mursaleen, M. A., A note on lacunary sequence spaces of fractional difference operator of order \((\alpha , \beta )\), Nonlinear Anal., Model. Control, 2022, 2022 · Zbl 1495.46009 · doi:10.1155/2022/2779479
[20] Berhail, A.; Tabouche, N.; Alzabut, J.; Samei, M. E., Using Hilfer-Katugampola fractional derivative in initial value Mathieu fractional differential equations with application on particle in the plane, Adv. Cont. Discr. Mod., 2022, 2022 · doi:10.1186/s13662-022-03716-6
[21] Rao, N.; Raiz, M.; Ayman-Mursaleen, M.; Mishra, V. N., Approximation properties of extended beta-type Szász-Mirakjan operators, Iran. J. Sci., 47, 1771-1781, 2023 · doi:10.1007/s40995-023-01550-3
[22] Samei, M. E.; Hatami, A., To numerical explore a fractional implicit q-differential equations with Hilfer type and via nonlocal conditions, Math. Anal. Convex Optim., 4, 1, 97-117, 2023 · doi:10.22034/maco.4.1.9
[23] Patle, P. R.; Gabeleh, M.; Rakočević, V., On new classes of cyclic (noncyclic) condensing operators with applications, J. Nonlinear Convex Anal., 23, 7, 1335-1351, 2022 · Zbl 1440.34014 · doi:10.36045/bbms/1576206350
[24] Gabeleh, M.; Vetro, C., A best proximity point approach to existence of solutions for a system of ordinary differential equations, Bull. Belg. Math. Soc. Simon Stevin, 26, 4, 493-503, 2019 · Zbl 1440.34014 · doi:10.36045/bbms/1576206350
[25] Patle, P. R.; Gabeleh, M.; Rakočević, V.; Samei, M. E., New best proximity point (pair) theorems via MNC and application to the existence of optimum solutions for a system of ψ-Hilfer fractional differential equations, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., 117, 2023 · Zbl 1519.47059 · doi:10.1007/s13398-023-01451-5
[26] Patle, P. R.; Gabeleh, M.; Rakočević, V., Sadovskii type best proximity point (pair) theorems with an application to fractional differential equations, Mediterr. J. Math., 19, 3, 2022 · Zbl 07531063 · doi:10.1007/s00009-022-02058-7
[27] Gabeleh, M.; Markin, J., Global optimal solutions of a system of differential equations via measure of noncompactness, Filomat, 35, 15, 5059-5071, 2021 · doi:10.2298/FIL2115059G
[28] Gabeleh, M.; Patel, D. K.; Patle, P. R., Darbo type best proximity point (pair) results using measure of noncompactness with application, Fixed Point Theory, 23, 1, 247-266, 2022 · Zbl 07606926 · doi:10.24193/fpt-ro.2022.1.16
[29] Gabeleh, M.; Markin, J., Optimum solutions for a system of differential equations via measure of noncompactness, Indag. Math., 29, 3, 895-906, 2018 · Zbl 06868638 · doi:10.1016/j.indag.2018.01.008
[30] Gabeleh, M.; Vetro, C., A new extension of Darbo’s fixed point theorem using relatively Meir-Keeler condensing operators, Bull. Aust. Math. Soc., 98, 2, 247-266, 2018 · Zbl 06945106 · doi:10.1017/S000497271800045X
[31] Aghajani, A.; Mursaleen, M.; Haghighi, A. S., Fixed point theorems for Meir-Keeler condensing operators via measure of noncompactness, Acta Math. Sci., 35, 3, 552-566, 2015 · Zbl 1487.34038 · doi:10.1186/s13662-019-2480-y
[32] Shahzad, N.; Roldán López de Hierro, A. F.; Khojasteh, F., Some new fixed point theorems under \(\mathcal{(A, S)} \)-contractivity conditions, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., 111, 307-324, 2017 · Zbl 1361.54028 · doi:10.1007/s13398-016-0295-1
[33] Roldán López de Hierro, A. F.; Shahzad, N., New fixed point theorem under r-contractions, Fixed Point Theory Appl., 2015, 2015 · Zbl 1462.54095 · doi:10.1186/s13663-015-0345-y
[34] Akhmerov, R. R.; Kamenskii, M. I.; Potapov, A. S.; Rodkina, A. E.; Sadovski, B. N., Measure of Noncompactness and Condensing Operators, 1992, Basel: Birkhäuser, Basel · Zbl 0748.47045 · doi:10.1007/978-3-0348-5727-7
[35] Kuchhe, K. D.; Mali, A. D., On the nonlinear \((k,\psi )\)-Hilfer fractional differential equations, Chaos Solitons Fractals, 152, 2, 2021 · Zbl 1510.34015 · doi:10.1016/j.chaos.2021.111335
[36] Kucche, K. D.; Mali, A. D., On the nonlinear impulsive \((k , \psi )\)-Hilfer fractional differential equations, Chaos Solitons Fractals, 152, 2021 · Zbl 1510.34015 · doi:10.1016/j.chaos.2021.111335
[37] Diethelm, K., The mean value theorems and a Nagumo-type uniqueness theorem for Caputo’s fractional calculus, Fract. Calc. Appl. Anal., 15, 304-313, 2012 · Zbl 1284.34010 · doi:10.2478/s13540-012-0022-3
[38] Amiri, P.; Samei, M. E., Existence of Urysohn and Atangana-Baleanu fractional integral inclusion systems solutions via common fixed point of multi-valued operators, Chaos Solitons Fractals, 165, 2, 2022 · Zbl 1508.45002 · doi:10.1016/j.chaos.2022.112822
[39] Adjimi, N.; Boutiara, A.; Samei, M. E.; Etemad, S.; Rezapour, S.; Chu, Y. M., On solutions of a hybrid generalized Caputo-type problem via the measure of noncompactness in the generalized version of Darbo’s theorem, J. Inequal. Appl., 2023, 2023 · Zbl 1532.34005 · doi:10.1186/s13660-023-02919-z
[40] Etemad, S.; Iqbal, I.; Samei, M. E.; Rezapour, S.; Alzabut, J.; Sudsutad, W.; Goksel, I., Some inequalities on multi-functions for applying fractional Caputo-Hadamard jerk inclusion system, J. Inequal. Appl., 2022, 2022 · Zbl 1506.34014 · doi:10.1186/s13660-022-02819-8
[41] Houas, M.; Samei, M. E., Existence and stability of solutions for linear and nonlinear damping of q-fractional Duffing-Rayleigh problem, Mediterr. J. Math., 20, 2023 · Zbl 1538.34026 · doi:10.1007/s00009-023-02355-9
[42] Bhairat, S. P.; Samei, M. E., Non-existence of a global solution for Hilfer-Katugampola fractional differential problem, Partial Differ. Equ. Appl. Math., 7, 2023 · doi:10.1016/j.padiff.2023.100495
[43] Shabibi, M.; Samei, M. E.; Ghaderi, M.; Rezapour, S., Some analytical and numerical results for a fractional q-differential inclusion problem with double integral boundary conditions, Adv. Differ. Equ., 2021, 2021 · Zbl 1494.34057 · doi:10.1186/s13662-021-03623-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.