×

Dynamics analysis and optimal control of delayed SEIR model in COVID-19 epidemic. (English) Zbl 07917593

MSC:

37N25 Dynamical systems in biology
92D30 Epidemiology

References:

[1] Kow, C. S.; Hasan, S. S., Do sleep quality and sleep duration before or after COVID-19 vaccination affect antibody response?, Chronobiol. Int., 38, 941-943, 2021 · doi:10.1080/07420528.2021.1900216
[2] Avadhani, A.; Cardinale, M.; Akintade, B., COVID-19 pneumonia: what APRNs should know, Nurse Pract., 46, 22-28, 2021 · doi:10.1097/01.NPR.0000753828.91626.a1
[3] Coronavirus Cases. https://www.worldometers.info/coronavirus/
[4] Kermack, W. O.; McKendrick, A. G., A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond., 115, 700-721, 1927 · JFM 53.0517.01
[5] Krämer, A.; Kretzchmar, M.; Kricheberg, K., Modern Infectious Disease Epidemiology, 2010, New York: Springer, New York · Zbl 1181.92057 · doi:10.1007/978-0-387-93835-6
[6] Li, M. Y., An Introduction to Mathematical Modeling of Infectious Diseases, 2018, Cham: Springer, Cham · Zbl 1396.92003 · doi:10.1007/978-3-319-72122-4
[7] Julien, A.; Portet, S., A simple model for COVID-19, Infect. Dis. Model., 5, 309-315, 2020
[8] Awasthi, A., A mathematical model for transmission dynamics of COVID-19 infection, Eur. Phys. J. Plus, 138, 2023 · doi:10.1140/epjp/s13360-023-03866-w
[9] Xu, C.; Yu, Y.; Ren, G.; Sun, Y.; Si, X., Stability analysis and optimal control of a fractional-order generalized SEIR model for the COVID-19 pandemic, Appl. Math. Comput., 457, 2023 · Zbl 07736229
[10] Nesteruk, I., Simulations and predictions of COVID-19 pandemic with the use of SIR model, Innov. Biosyst. Bioeng., 4, 110-121, 2020 · doi:10.20535/ibb.2020.4.2.204274
[11] Cooper, I.; Mondal, A.; Antonopoulos, C. G., A SIR model assumption for the spread of COVID-19 in different communities, Chaos Solitons Fractals, 139, 2020 · doi:10.1016/j.chaos.2020.110057
[12] Annas, S.; Pratama, M. I.; Rifandi, M.; Sanusi, W.; Side, S., Stability analysis and numerical simulation of SEIR model for pandemic COVID-19 spread in Indonesia, Chaos Solitons Fractals, 139, 2020 · doi:10.1016/j.chaos.2020.110072
[13] Ahmed, N.; Elsonbaty, A.; Raza, A.; Rfiq, M.; Adel, W., Numerical simulation and stability analysis of a novel reaction-diffusion COVID-19 model, Nonlinear Dyn., 106, 1293-1310, 2021 · doi:10.1007/s11071-021-06623-9
[14] Biswas, S. K.; Ahmed, N. U., Mathematical modeling and optimal intervention of COVID-19 outbreak, Quant. Biol., 1, 84-92, 2021 · doi:10.15302/J-QB-020-0229
[15] Kouidere, A.; EL Youssoufi, L.; Ferjouchia, H.; Balatif, O.; Rachik, M., Optimal control of mathematical modeling of the spread of the COVID pandemic with highlighting the negative impact of quarantine on diabetics people with cost-effectiveness, Chaos Solitons Fractals, 145, 2021 · doi:10.1016/j.chaos.2021.110777
[16] Deressa, C. T.; Duressa, G. F., Modeling and optimal control analysis of transmission dynamics of COVID-19: the case of Ethiopia, Alex. Eng. J., 60, 719-732, 2021 · doi:10.1016/j.aej.2020.10.004
[17] Ahmed, M.; Masud, M.; Sarker, M., Bifurcation analysis and optimal control of discrete SIR model for COVID-19, Chaos Solitons Fractals, 174, 2023 · doi:10.1016/j.chaos.2023.113899
[18] Guo, Y.; Li, T., Modelling the competitive transmission of the Omecron strain and Delta strain of COVID-19, J. Math. Anal. Appl., 526, 2023 · Zbl 1519.92257 · doi:10.1016/j.jmaa.2023.127283
[19] Chen, Y.; Cheng, J.; Jiang, Y.; Liu, K., A time delay dynamic system with external source for the local outbreak of 2019-nCoV, Appl. Anal., 101, 146-157, 2022 · Zbl 1492.34084 · doi:10.1080/00036811.2020.1732357
[20] Paul, S.; Lorin, E., Estimation of COVID-19 recovery and decease periods in Canada using delay model, Sci. Rep., 11, 2021 · doi:10.1038/s41598-021-02982-w
[21] Liu, C.; Loxton, R.; Teo, K. L., A computational method for solving time-delay optimal control problems with free terminal time, Syst. Control Lett., 72, 53-60, 2014 · Zbl 1302.49042 · doi:10.1016/j.sysconle.2014.07.001
[22] Liu, C.; Loxton, R.; Teo, K. L., Optimal parameter selection for nonlinear multistage systems with time-delays, Comput. Optim. Appl., 59, 285-306, 2014 · Zbl 1326.90099 · doi:10.1007/s10589-013-9632-x
[23] Liu, C.; Loxton, R.; Teo, K. L., Switching time and parameter optimization in nonlinear switched systems with multiple time-delays, J. Optim. Theory Appl., 163, 957-988, 2014 · Zbl 1304.49063 · doi:10.1007/s10957-014-0533-7
[24] Liu, C.; Gong, Z.; Teo, K. L.; Sun, J.; Caccetta, L., Robust multi-objective optimal switching control arising in 1, 3-propanediol microbial fed-batch process, Nonlinear Anal. Hybrid Syst., 25, 1-20, 2017 · Zbl 1378.49043 · doi:10.1016/j.nahs.2017.01.006
[25] Liu, C.; Loxton, R.; Lin, Q.; Teo, K. L., Dynamic optimization for switched time-delay systems with state-dependent switching conditions, SIAM J. Control Optim., 56, 3499-3523, 2018 · Zbl 1400.49042 · doi:10.1137/16M1070530
[26] Liu, C.; Loxton, R.; Teo, K. L.; Wang, S., Optimal state-delay control in nonlinear dynamic systems, Automatica, 135, 2022 · Zbl 1479.49072 · doi:10.1016/j.automatica.2021.109981
[27] Smith, H. L., An Introduction to the Theory of Competitive and Cooperative Systems, 1995, Rhode Island: Am. Math. Soc., Rhode Island · Zbl 0821.34003
[28] Van den Driessche, P.; Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180, 29-48, 2002 · Zbl 1015.92036 · doi:10.1016/S0025-5564(02)00108-6
[29] Cesari, L., Asymptotic Behavior and Stability Problems in Ordinary Differential Equations, 2012, Berlin: Springer, Berlin · Zbl 0121.07203
[30] Bianca, C.; Ferrara, M.; Guerrini, L., The Cai model with time delay: existence of periodic solutions and asymptotic analysis, Appl. Math. Inf. Sci., 7, 21-27, 2013 · doi:10.12785/amis/070103
[31] Hassard, B. D.; Kazarinoff, N. D.; Wan, Y. H., Theory and Applications of Hopf Bifurcation, 1981, Cambridge: Cambridge University Press, Cambridge · Zbl 0474.34002
[32] Li, H.; Liu, X.; Yan, R.; Liu, C., Hopf bifurcation analysis of a tumor virotherapy model with two time delays, Phys. A, Stat. Mech. Appl., 553, 2020 · Zbl 1527.92025 · doi:10.1016/j.physa.2020.124266
[33] Ruan, S.; Wei, J., On the zeros of a third degree exponential polynomial with applications to a delayed model for the control of testosterone secretion, Math. Med. Biol., 18, 41-52, 2001 · Zbl 0982.92008 · doi:10.1093/imammb/18.1.41
[34] Ray, W. H.; Soliman, M. A., The optimal control of processes containing pure time delays - I necessary conditions for an optimum, Chem. Eng. Sci., 25, 1911-1925, 1970 · doi:10.1016/0009-2509(70)87009-9
[35] Lenhart, S.; Workman, J. T., Optimal Control Applied to Biological Models, 2007, London: CRC Press, London · Zbl 1291.92010 · doi:10.1201/9781420011418
[36] Libotte, G. B.; Lobato, F. S.; Platt, G. M.; Neto, A. J.S., Determination of an optimal control strategy for vaccine administration in COVID-19 pandemic treatment, Comput. Methods Programs Biomed., 196, 2020 · doi:10.1016/j.cmpb.2020.105664
[37] Li, T.; Guo, Y., Modeling and optimal control of mutated COVID-19 (Delta strain) with imperfect vaccination, Chaos Solitons Fractals, 156, 2022 · doi:10.1016/j.chaos.2022.111825
[38] ElHassan, A.; AbuHour, Y.; Ahmad, A., An optimal control model for Covid-19 spread with impacts of vaccination and facemask, Heliyon, 9, 2023 · doi:10.1016/j.heliyon.2023.e19848
[39] Liu, C. Y.; Gong, Z.; Yu, C.; Wang, S.; Teo, K. L., Optimal control computation for nonlinear fractional time-delay systems with state inequality constraints, J. Optim. Theory Appl., 191, 83-117, 2021 · Zbl 1486.49043 · doi:10.1007/s10957-021-01926-8
[40] Gong, Z.; Liu, C.; Teo, K. L.; Wang, S.; Wu, Y. H., Numerical solution of free final time fractional optimal control problems, Appl. Math. Comput., 405, 2021 · Zbl 1510.49002
[41] Liu, C.; Gong, Z. H.; Teo, K. L.; Wang, S., Optimal control of nonlinear fractional-order systems with multiple time-varying delays, J. Optim. Theory Appl., 193, 856-876, 2022 · Zbl 1492.49004 · doi:10.1007/s10957-021-01935-7
[42] Liu, C.; Gong, Z.; Wang, S.; Teo, K. L., Numerical solution of delay fractional optimal control problems with free terminal time, Optim. Lett., 17, 1359-1378, 2023 · Zbl 1527.49024 · doi:10.1007/s11590-022-01926-1
[43] Liu, C.; Yu, C.; Gong, Z.; Cheong, H.; Teo, K. L., Numerical computation of optimal control problems with Atangana-Baleanu fractional derivatives, J. Optim. Theory Appl., 197, 798-816, 2023 · Zbl 1518.49037 · doi:10.1007/s10957-023-02212-5
[44] Liu, C.; Zhou, T.; Gong, Z.; Yi, X.; Teo, K. L.; Wang, S., Robust optimal control of nonlinear fractional systems, Chaos Solitons Fractals, 175, 2023 · doi:10.1016/j.chaos.2023.113964
[45] Panwar, V. S.; Sheik Uduman, P. S.; Gómez-Aguilar, J. F., Mathematiacal modeling of coronavirus disease COVID-19 dynamics using CF, and ABC non-singular fractional derivatives, Chaos Solitons Fractals, 145, 2021 · doi:10.1016/j.chaos.2021.110757
[46] Pandey, P.; Chu, Y. M.; Gómez-Aguilar, J. F.; Jahanshahi, H.; Aly, A. A., A novel fractional mathematicatical model of COVID-19 epidemic considering quarantine and latent time, Results Phys., 26, 2021 · doi:10.1016/j.rinp.2021.104286
[47] Guo, Y.; Li, T., Fractional-order modeling and optimal control of a new online game addition model based on real data, Commun. Nonlinear Sci. Numer., 121, 2023 · Zbl 1509.91029 · doi:10.1016/j.cnsns.2023.107221
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.