×

A rolling horizon planning approach for short-term demand supply matching. (English) Zbl 07916338

Summary: Demand fulfillment and order management are important functions in semiconductor supply chains to interact with customers. In this paper, an iterative short-term demand supply matching (STDSM) algorithm based on mixed-integer linear programming (MILP) is proposed. This approach repromises orders taking into account the finite capacity of the shop floor. Decomposition is used to obtain computationally tractable subproblems. The STDSM approach is applied together with master planning and allocation planning in a rolling horizon setting. A simulation model of a simplified semiconductor supply chain is used for the rolling horizon experiments. The experiments demonstrate that the proposed STDSM scheme outperforms conventional business rule-based heuristics with respect to several delivery performance-related measures and with respect to stability.

MSC:

90Bxx Operations research and management science

References:

[1] Albey, E.; Norouzi, A.; Kempf, K.; Uzsoy, R., Demand modeling with forecast evolution: an application to production planning, IEEE Trans Semicond Manuf, 28, 3, 374-384, 2015 · doi:10.1109/TSM.2015.2453792
[2] Alemany, MME; Ortiz, A.; Fuertes-Miquel, VS, A decision support tool for the order promising process with product homogeneity requirements in hybrid make-to-stock and make-to-order environments. Applications to a ceramic tile company, Comput Ind Eng, 122, 219-234, 2018 · doi:10.1016/j.cie.2018.05.040
[3] Azevedo, RC; Amours, SD; Rönnqvist, M., Advances in profit-driven order promising for make-to-stock environments—a case study with a Canadian softwood lumber manufacturer, INFOR Inf Syst Oper Res, 54, 3, 210-233, 2016 · Zbl 1506.90148
[4] Babarogić, S.; Makajić-Nikolić, D.; Lečić-Cvetković, D.; Atanasov, N., Multi-period customer service level maximization under limited production capacity, Int J Comput Commun Control, 7, 5, 798-806, 2012 · doi:10.15837/ijccc.2012.5.1075
[5] Brahimi, N.; Aouam, T.; Aghezzaf, EH, Integrating order acceptance decisions with flexible due dates in a production planning model with load-dependent lead times, Int J Prod Res, 53, 3810-3822, 2015 · doi:10.1080/00207543.2014.993045
[6] Chen, T., Strengthening the competitiveness and sustainability of a semiconductor manufacturer with cloud manufacturing, Sustainability, 6, 251-266, 2014 · doi:10.3390/su6010251
[7] Chen, J.; Dong, M., Available-to-promise-based flexible order allocation in ATO supply chains, Int J Prod Res, 52, 22, 6717-6738, 2014 · doi:10.1080/00207543.2014.911419
[8] Chen, L.; Lee, H., Information sharing and order variability control under a generalized demand model, Manag Sci, 55, 5, 781-797, 2009 · Zbl 1232.90034 · doi:10.1287/mnsc.1080.0983
[9] Chen, JH; Lin, JT; Wu, YS, Order promising rolling planning with ATP/CTP reallocation mechanism, Ind Eng Manag Syst, 7, 1, 57-65, 2008
[10] Chiang, C.; Hsu, H-L, An order fulfillment model with periodic review mechanism in semiconductor foundry plants, IEEE Trans Semicond Manuf, 27, 4, 489-500, 2014 · doi:10.1109/TSM.2014.2342493
[11] Chien, C-F; Dauzère-Pérès, S.; Ehm, H.; Fowler, J.; Jiang, Z.; Krishnaswamy, S.; Mönch, L.; Uzsoy, R., Modeling and analysis of semiconductor manufacturing in a shrinking world: challenges and successes, Eur J Ind Eng, 5, 3, 254-271, 2011 · doi:10.1504/EJIE.2011.041616
[12] Chien, C-F; Ehm, H.; Fowler, JW; Mönch, L., Modeling and analysis of semiconductor supply chains (Dagstuhl seminar 16062), Dagstuhl Rep, 6, 2, 28-64, 2016
[13] Dowsland, KA; Dowsland, WB, Packing problems, Eur J Oper Res, 56, 1, 2-14, 1992 · Zbl 0825.90355 · doi:10.1016/0377-2217(92)90288-K
[14] Ewen, H.; Mönch, L.; Ehm, H.; Ponsignon, T.; Fowler, JW; Forstner, L., A testbed for simulating semiconductor supply chains, IEEE Trans Semicond Manuf, 30, 3, 293-305, 2017 · doi:10.1109/TSM.2017.2713775
[15] Fleischmann, B.; Meyr, H.; Dyckhoff, H.; Lackes, R.; Reese, J.; Fandel, G., Customer orientation in advanced planning systems, Supply chain management and reverse logistics, 298-321, 2004, Berlin: Springer, Berlin
[16] Fordyce, K.; Wang, C-T; Chang, C-H; Degbotse, A.; Denton, B.; Lyon, P.; Milne, RJ; Orzell, R.; Rice, R.; Waite, J.; Kempf, K.; Keskinocak, P.; Uzsoy, R., The ongoing challenge: creating an enterprise-wide detailed supply chain plan for semiconductor and package operations, Planning production and inventories in the extended enterprise: a state of the art handbook, 313-387, 2011, Berlin: Springer, Berlin · doi:10.1007/978-1-4419-8191-2_14
[17] Framinan JM, Perez-Gonzalez P (2016) Available-to-promise systems in the semiconductor industry: a review of contributions and a preliminary experiment. In: Proceedings of the 2016 winter simulation conference, pp 2653-2663
[18] Geier, S., Demand fulfillment bei assembly-to-order-fertigung: analyse, und anwendung in der computerindustrie, 2014, Wiesbaden: Springer, Wiesbaden · doi:10.1007/978-3-658-04879-2
[19] Heath, DC; Jackson, PL, Modeling the evolution of demand forecasts with application to safety stock analysis in production/distribution systems, IIE Trans, 26, 17-30, 1994 · doi:10.1080/07408179408966604
[20] Herding R, Mönch L (2021) A short-term demand supply matching approach for semiconductor supply chains. Technical report (INFORMATIK BERICHTE 382-06/2021), University of Hagen, Department of Mathematics and Computer Science
[21] Herding, R.; Mönch, L., An agent-based infrastructure for assessing the performance of planning approaches for semiconductor supply chains, Expert Syst Appl, 202, 117001, 2022 · doi:10.1016/j.eswa.2022.117001
[22] Herding R, Mönch L, Ziarnetzky T, Ponsignon T, Seitz A, Ehm H (2017) Simulation-based performance assessment of demand fulfillment approaches in semiconductor supply chains. In: Proceedings of the 47th international conference on computers and industrial engineering (CIE47)
[23] Jeong, B.; Sim, SB; Jeong, HS; Kim, SW, An available-to-promise system for TFT-LCD manufacturing in supply chain, Comput Ind Eng, 43, 191-212, 2002 · doi:10.1016/S0360-8352(02)00064-5
[24] Kacar, NB; Mönch, L.; Uzsoy, R., Modeling cycle times in production planning models for wafer fabrication, IEEE Trans Semicond Manuf, 29, 2, 153-167, 2016 · doi:10.1109/TSM.2016.2546314
[25] Kallrath, J.; Maindl, TI; Kallrath, J.; Maindl, TI, Planning in semiconductor manufacturing, Real optimization with SAP APO, 105-117, 2006, Heidelberg: Springer, Heidelberg
[26] Kilger, C.; Meyr, H.; Stadtler, H.; Kilger, C.; Meyr, H., Demand fulfilment and ATP, Supply chain management and advanced planning—concepts, models and software, 177-194, 2015, Berlin: Springer, Berlin · doi:10.1007/978-3-642-55309-7_9
[27] Kimms, A., Stability measures for rolling schedules with applications to capacity expansion planning, master production scheduling, and lot sizing, Omega, 26, 3, 355-366, 1998 · doi:10.1016/S0305-0483(97)00056-X
[28] Knutson, K.; Kempf, K.; Fowler, JW; Carlyle, M., Lot-to-order matching for a semiconductor assembly and test facility, IIE Trans, 31, 1103-1111, 1998 · doi:10.1080/07408179908969911
[29] Leachman, RC; Benson, F.; Liu, C.; Raar, DJ, IMPReSS: an automated production-planning and delivery-quotation system at Harris corporation: semiconductor sector, Interfaces, 26, 1, 6-37, 1996 · doi:10.1287/inte.26.1.6
[30] Lin, J.; Hong, I.; Wu, C.; Wang, K., A model for batch available-to-promise in order fulfillment processes for TFT-LCD production chains, Comput Ind Eng, 59, 4, 720-729, 2010 · doi:10.1016/j.cie.2010.07.026
[31] Lyon, P.; Milne, R.; Orzell, R.; Rice, R., matching assets with demand in supply-chain management at IBM microelectronics, Interfaces, 31, 1, 108-124, 2001 · doi:10.1287/inte.31.1.108.9693
[32] Meyr, H., Customer segmentation, allocation planning and order promising in make-to-stock production, Or Spectrum, 31, 229-256, 2009 · Zbl 1160.90426 · doi:10.1007/s00291-008-0123-x
[33] Missbauer, H.; Uzsoy, R., Production planning with capacitated resources and congestion, 2020, New York: Springer, New York · doi:10.1007/978-1-0716-0354-3
[34] Missbauer, H.; Uzsoy, R., Order release in production planning and control systems: challenges and opportunities, Int J Prod Res, 60, 1, 256-276, 2022 · doi:10.1080/00207543.2021.1994165
[35] Mönch, L.; Drießel, R., A distributed shifting bottleneck heuristic for complex job shops, Comput Ind Eng, 49, 3, 673-680, 2005 · doi:10.1016/j.cie.2005.06.004
[36] Mönch, L.; Fowler, JW; Mason, SJ, Production planning and control for semiconductor wafer fabrication facilities: modeling, analysis and systems, 52, 2013, New York: Springer, New York · doi:10.1007/978-1-4614-4472-5
[37] Mönch, L.; Uzsoy, R.; Fowler, JW, A survey of semiconductor supply chain models part I: semiconductor supply chains, strategic network design, and supply chain simulation, Int J Prod Res, 56, 13, 4524-4545, 2018 · doi:10.1080/00207543.2017.1401233
[38] Mönch, L.; Uzsoy, R.; Fowler, JW, A survey of semiconductor supply chain models part III: master planning, production planning, and demand fulfillment, Int J Prod Res, 56, 13, 4565-4584, 2018 · doi:10.1080/00207543.2017.1401234
[39] Mousavi, BA; Azzouz, R.; Heavey, C., Mathematical modelling of products allocation to customers for semiconductor supply chain, Procedia Manuf, 38, 1042-1049, 2019 · doi:10.1016/j.promfg.2020.01.190
[40] Ponsignon, T.; Mönch, L., Heuristic approaches for master planning in semiconductor manufacturing, Comput Oper Res, 39, 3, 479-491, 2012 · Zbl 1251.90110 · doi:10.1016/j.cor.2011.06.009
[41] Seitz, A.; Grunow, M., Increasing accuracy and robustness of order promises, Int J Prod Res, 55, 3, 656-670, 2017 · doi:10.1080/00207543.2016.1195024
[42] Seitz, A.; Grunow, M.; Akkerman, R., Data driven supply allocation to individual customers considering forecast bias, Int J Prod Econ, 227, 107683, 2020 · doi:10.1016/j.ijpe.2020.107683
[43] Smith KD, Kempf KG (2005) Application of model predictive control and optimization methods to semiconductor manufacturing supply-side inventory replenishment. In: Proceedings of the IEEE international symposium on semiconductor manufacturing, pp 35-38
[44] Soares, A.; Azevedo, A.; de Sousa, J., Distributed planning and control systems for the virtual enterprise: organizational requirements and development life-cycle, J Intell Manuf, 11, 253-270, 2000 · doi:10.1023/A:1008967209167
[45] Testbed (2021) https://p2schedgen.fernuni-hagen.de/downloads/simulation. Last Accessed 26 Sept 2021
[46] Tsai, K.; Wang, S., Multi-site available to promise modeling for assemble-to-order manufacturing: an illustration on TFT-LCD manufacturing, Int J Prod Econ, 117, 174-184, 2009 · doi:10.1016/j.ijpe.2008.10.010
[47] Vepsalainen, APJ; Morton, TE, Priority rules for job shops with weighted tardiness cost, Manag Sci, 33, 8, 1035-1047, 1987 · doi:10.1287/mnsc.33.8.1035
[48] Wang, H-K; Mönch, L., A matheuristic for making order acceptance decisions in multi-product, multi-stage manufacturing systems, Appl Soft Comput, 211, 107640, 2021 · doi:10.1016/j.asoc.2021.107640
[49] Wu X, Qiao F, Poon K (2014) Cloud manufacturing application in semiconductor industry. In: Proceedings of the 2014 winter simulation conference, pp 2376-2383
[50] Yang, H-C; Chen, Y-L; Cheng, F-T, A cloud manufacturing service to control outsourcing production, J Chin Inst Eng, 43, 8, 838-850, 2020 · doi:10.1080/02533839.2020.1819427
[51] Zhao, Z.; Ball, M.; Chen, CY; Prabhu, V.; Kumara, S.; Kamath, M., A scalable supply chain infrastructures research test-bed, Scalable enterprise systems: an introduction to recent advances, 217-247, 2003, Boston: Kluwer, Boston · doi:10.1007/978-1-4615-0389-7_7
[52] Ziarnetzky, T.; Mönch, L.; Uzsoy, R., Rolling horizon, multi-product production planning with chance constraints and forecast evolution for wafer fabs, Int J Prod Res, 56, 18, 6112-6134, 2018 · doi:10.1080/00207543.2018.1478461
[53] Ziarnetzky, T.; Mönch, L.; Uzsoy, R., Simulation-based performance assessment of production planning models with safety stock and forecast evolution in semiconductor wafer fabrication, IEEE Trans Semicond Manuf, 33, 1, 1-12, 2020 · doi:10.1109/TSM.2019.2958526
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.