×

A multifluid model with chemically reacting components – construction of weak solutions. (English) Zbl 07916209

Summary: We investigate the existence of weak solutions to a multi-component system, consisting of compressible chemically reacting components, coupled with the compressible Stokes equation for the velocity. Specifically, we consider the case of irreversible chemical reactions and assume a nonlinear relation between the pressure and the particular densities. These assumptions cause the additional difficulties in the mathematical analysis, due to the possible presence of vacuum.
It is shown that there exists a global weak solution, satisfying the \(L^\infty\) bounds for all the components. We obtain strong compactness of the sequence of densities in \(L^p\) spaces, under the assumption that all components are strictly positive. The applied method captures the properties of models of high generality, which admit an arbitrary number of components. Furthermore, the framework that we develop can handle models that contain both diffusing and non-diffusing elements.

MSC:

35Q30 Navier-Stokes equations
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
76V05 Reaction effects in flows
35D30 Weak solutions to PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence

References:

[1] Prigogine, I., Thermodynamics of Irreversible Processes, 1967, Interscience Publishers, John Wiley & Sons: Interscience Publishers, John Wiley & Sons New York · Zbl 0115.23101
[2] Rajagopal, K.; Tao, L., Mechanics of Mixtures, 1995, World Scientific: World Scientific Singapore · Zbl 0941.74500
[3] Giovangigli, V., (Multicomponent Flow Modeling. Multicomponent Flow Modeling, Modeling and Simulation in Science Engineering and Technology, 1999, Birkhäuser Boston Inc.: Birkhäuser Boston Inc. Boston, MA) · Zbl 0956.76003
[4] Roubíček, T., Incompressible ionized non-Newtonian fluid mixtures, SIAM J. Math. Anal., 39, 863-890, 2007 · Zbl 1148.35070
[5] Öttinger, H., Beyond Equilibrium Thermodynamics, 2005, Wiley Interscience: Wiley Interscience Hoboken, New Jersey
[6] Zatorska, E., On the flow of chemically reacting gaseous mixture, J. Differential Equations, 12, 253, 3471-3500, 2012 · Zbl 1258.35041
[7] Zatorska, E., Mixtures: Sequential stability of variational entropy solutions, J. Math. Fluid Mech., 17, 437-461, 2013 · Zbl 1326.35294
[8] Mucha, P. B.; Pokorný, M.; Zatorska, E., Chemically reacting mixtures in terms of degenerated parabolic setting, J. Math. Phys., 54, 7, 2013 · Zbl 1302.76207
[9] Bulíček, M.; Jüngel, A.; Pokorný, M.; Zamponi, N., Existence analysis of a stationary compressible fluid model for heat-conducting and chemically reacting mixtures, J. Math. Phys., 63, 5, 2022 · Zbl 1508.35034
[10] Dreyer, W.; Druet, P.-E.; Gajewski, P.; Guhlke, C., Analysis of improved Nernst-Planck-Poisson models of compressible isothermal electrolytes, Z. Angew. Math. Phys., 71, 4, 68, 2020 · Zbl 1442.35332
[11] De Groot, S.; Mazur, P., Non-Equilibrium Thermodynamics, 1984, Dover Publication: Dover Publication New York · Zbl 1375.82004
[12] Bothe, D.; Druet, P.-E., On the structure of continuum thermodynamical diffusion fluxes-A novel closure scheme and its relation to the Maxwell-Stefan and the Fick-Onsager approach, Internat. J. Engrg. Sci., 184, 103818, 2023 · Zbl 07653138
[13] Bothe, D., (On the Maxwell-Stefan Approach to Multicomponent Diffusion. On the Maxwell-Stefan Approach to Multicomponent Diffusion, Parabolic Problems, Progr. Nonlinear Differential Equations Appl., vol. 80, 2011, Birkhäuser/Springer Basel AG, Basel) · Zbl 1250.35127
[14] L. Boudin, B. Grec, F. Salvarani, A mathematical and numerical analysis of the Maxwell-Stefan diffusion equations, Discrete Contin. Dyn. Syst. Ser. B 17 (5) 1427-1440. · Zbl 1245.35091
[15] Jüngel, A.; Stelzer, I. V., Existence analysis of Maxwell-Stefan systems for multicomponent mixtures, SIAM J. Math. Anal., 45, 4, 2421-2440, 2013 · Zbl 1276.35104
[16] Herberg, M.; Meyries, M.; Pruss, J.; Wilke, M., Reaction-diffusion systems of Maxwell-Stefan type with reversible mass-action kinetics, Nonlinear Anal., 159, 264-284, 2017 · Zbl 1371.35363
[17] Jüngel, A., (Entropy Methods for Diffusive Partial Differential Equations. Entropy Methods for Diffusive Partial Differential Equations, SpringerBriefs in Mathematics, 2016, Springer: Springer Cham) · Zbl 1361.35002
[18] Druet, P.-E.; Jüngel, A., Analysis of cross-diffusion systems for fluid mixtures driven by a pressure gradient, SIAM J. Math. Anal., 52, 2, 2179-2197, 2020 · Zbl 1442.35188
[19] Feireisl, E.; Petzeltová, H.; Trivisa, K., Multicomponent reactive flows: global-in-time existence for large data, Commun. Pure Appl. Anal., 7, 1017-1047, 2008 · Zbl 1323.76091
[20] Mucha, P. B.; Pokorný, M.; Zatorska, E., Heat-conducting, compressible mixtures with multicomponent diffusion: Construction of a weak solution, SIAM J. Math. Anal., 47, 3747-3797, 2015 · Zbl 1322.76052
[21] Zatorska, E., On the steady flow of a multicomponent, compressible, chemically reacting gas, Nonlinearity, 24, 11, 3267, 2011 · Zbl 1254.35198
[22] Giovangigli, V.; Pokorný, M.; Zatorska, E., On the steady flow of reactive gaseous mixture, Analysis (Munich), 5, 319-341, 2015 · Zbl 1327.76110
[23] Piasecki, T.; Pokorný, M., Weak and variational entropy solutions to the system describing steady flow of a compressible reactive mixture, Nonlinear Anal., 159, 365-392, 2017 · Zbl 1365.76277
[24] Piasecki, T.; Shibata, Y.; Zatorska, E., On strong dynamics of compressible two-component mixture flow, SIAM J. Math. Anal., 51, 4, 2793-2849, 2019 · Zbl 1419.76541
[25] Piasecki, T.; Shibata, Y.; Zatorska, E., On the isothermal compressible multi-component mixture flow: The local existence and maximal \(L^p- L^q\) regularity of solutions, Nonlinear Anal., 189, 111571, 2019 · Zbl 1427.35184
[26] Druet, P.-E., Incompressible limit for a fluid mixture, Nonlinear Anal. Real World Appl., 72, 103859, 2023 · Zbl 1525.35187
[27] Bothe, D.; Pierre, M., The instantaneous limit for reaction-diffusion systems with a fast irreversible reaction, Discrete Contin. Dyn. Syst. Ser. S, 5, 1, 49-59, 2012 · Zbl 1259.35015
[28] Bothe, D.; Kroeger, M.; Warnecke, H.-J., A VOF-based approach for the simulation of reactive mass transfer from rising bubbles, Fluid Dyn. Mater. Process., 7, 303-316, 2011
[29] Juncu, G., Unsteady heat and/or mass transfer from a fluid sphere in creeping flow, Int. J. Heat Mass Transfer, 44, 12, 2239-2246, 2001 · Zbl 0969.76529
[30] Koynov, A.; Khinast, J. G.; Tryggvason, G., Mass transfer and chemical reactions in bubble swarms with dynamic interfaces, AIChE J., 51, 10, 2786-2800, 2005
[31] Sard, A., The measure of the critical values of differentiable maps, Bull. Amer. Math. Soc., 48, 883-890, 1942 · Zbl 0063.06720
[32] Mucha, P. B., On cylindrical symmetric flows through pipe-like domains, J. Differential Equations, 201, 2, 304-323, 2004 · Zbl 1057.35032
[33] Mucha, P. B.; Rautmann, R., Convergence of Rothe’s scheme for the Navier-Stokes equations with slip conditions in 2D domains, ZAMM Z. Angew. Math. Mech., 86, 9, 691-701, 2006 · Zbl 1108.76021
[34] Mucha, P. B.; Pokorný, M., The rot-div system in exterior domains, J. Math. Fluid Mech., 16, 4, 701-720, 2014 · Zbl 1336.35154
[35] Novotný, A.; Straškraba, I., (Introduction to the Mathematical Theory of Compressible Flow. Introduction to the Mathematical Theory of Compressible Flow, Oxford Lecture Series in Mathematics and Its Applications, 2004, Oxford University Press) · Zbl 1088.35051
[36] Wu, Z.; Yin, J.; Wang, C., Elliptic and Parabolic Equations, 2006, World Scientific: World Scientific Hackensack, NJ · Zbl 1108.35001
[37] Giovangigli, V., (Bellomo, N., Multicomponent Flow Modeling. Multicomponent Flow Modeling, Modeling and Simulation in Science, Engineering and Technology, 1999, Birkhäuser Boston: Birkhäuser Boston Boston, MA) · Zbl 0956.76003
[38] Krantz, S.; Parks, H., The Implicit Function Theorem. History, Theory, and Applications, 2013, Birkhäuser New York, NY · Zbl 1269.58003
[39] Bresch, D.; Jabin, P., Global weak solutions of PDEs for compressible media: A compactness criterion to cover new physical situations, Springer INdAM Ser., 17, 33-54, 2017 · Zbl 1371.35192
[40] Bresch, D.; Jabin, P.-E., Global existence of weak solutions for compressible Navier-Stokes equations: Thermodynamically unstable pressure and anisotropic viscous stress tensor, Ann. of Math., 188, 2, 577-684, 2018 · Zbl 1405.35133
[41] Bennett, C.; DeVore, R. A.; Sharpley, R., Weak-\( L^\infty\) and \(B M O\), Ann. of Math., 113, 3, 601-611, 1981 · Zbl 0465.42015
[42] Mucha, P. B.; Rusin, W., Zygmund spaces, inviscid limit and uniqueness of Euler flows, Comm. Math. Phys., 280, 831-841, 2008 · Zbl 1143.35346
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.