×

Existence and asymptotics of normalized solutions for the logarithmic Schrödinger system. (English) Zbl 07915994

Summary: This paper is concerned with the following logarithmic Schrödinger system \[ \begin{cases} - \Delta u_1 + \omega_1 u_1 = \mu_1 u_1 \log u^2_1 + \cfrac{2p}{p+q} |u_2|^q |u_1|^{p-2} u_1, \\ - \Delta u_2 + \omega_2 u_2 = \mu_2 u_2 \log u^2_2 + \cfrac{2q}{p+q} |u_1|^p |u_2|^{q-2} u_2, \\ \displaystyle\int_\Omega |u_i|^2 dx = \rho_i, \quad i = 1, 2, \\ (u_1, u_2) \in H^1_0 (\Omega; \mathbb{R}^2), \end{cases} \] where \(\Omega = \mathbb{R}^N\) or \(\Omega \subset \mathbb{R}^N\) \((N \geqslant 3)\) is a bounded smooth domain, and \(\omega_i \in \mathbb{R}\), \(\mu_i, \rho_i > 0\) for \(i = 1, 2\). Moreover, \(p, q \geqslant 1\), and \(2 \leqslant p + q \leqslant 2^*\), where \(2^* := \frac{2N}{N - 2}\). By using a Gagliardo-Nirenberg inequality and a careful estimation of \(u \log u^2\), firstly, we provide a unified proof of the existence of the normalized ground state solution for all \(2 \leqslant p + q \leqslant 2^*\). Secondly, we consider the stability of normalized ground state solutions. Finally, we analyze the behavior of solutions for the Sobolev-subcritical case and pass to the limit as the exponent \(p + q\) approaches \(2^*\). Notably, the uncertainty of the sign of \(u \log u^2\) in \((0, +\infty)\) is one of the difficulties of this paper, and also one of the motivations we are interested in. In particular, we can establish the existence of positive normalized ground state solutions for the Brézis-Nirenberg type problem with logarithmic perturbations (i.e., \(p+q = 2^*\)). In addition, our study includes proving the existence of solutions to the logarithmic type Brézis-Nirenberg problem with and without the \(L^2\)-mass constraint \(\int_\Omega |u_i|^2 dx = \rho_i\) \((i = 1, 2)\) by two different methods, respectively. Our results seem to be the first result of the normalized solution of the coupled nonlinear Schrödinger system with logarithmic perturbations.

MSC:

35J47 Second-order elliptic systems
35J61 Semilinear elliptic equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A15 Variational methods applied to PDEs

References:

[1] Alfaro, M.; Carles, R., Superexponential growth or decay in the heat equation with a logarithmic nonlinearity, Dyn Partial Differ Equ, 14, 343-358, 2017 · Zbl 1386.35129 · doi:10.4310/DPDE.2017.v14.n4.a2
[2] Alves, C.; de Morais Filho, D.; Souto, M., On systems of elliptic equations involving subcritical or critical Sobolev exponents, Nonlinear Anal, 42, 771-787, 2000 · Zbl 0958.35037 · doi:10.1016/S0362-546X(99)00121-2
[3] Ardila, A., Orbital stability of Gausson solutions to logarithmic Schrödinger equations, Electron J Differential Equations, 335, 1-9, 2016 · Zbl 1358.35163
[4] Badiale, M.; Serra, E., Semilinear Elliptic Equations for Beginners. Existence Results via the Variational Approach, 2011, London: Springer, London · Zbl 1214.35025 · doi:10.1007/978-0-85729-227-8
[5] Bartsch, T.; Jeanjean, L.; Soave, N., Normalized solutions for a system of coupled cubic Schrödinger equations on ℝ^3, J Math Pures Appl (9), 106, 583-614, 2016 · Zbl 1347.35107 · doi:10.1016/j.matpur.2016.03.004
[6] Bartsch, T.; Soave, N., A natural constraint approach to normalized solutions of nonlinear Schröodinger equations and systems, J Funct Anal, 272, 4998-5037, 2017 · Zbl 1485.35173 · doi:10.1016/j.jfa.2017.01.025
[7] Bartsch, T.; Zhong, X.; Zou, W., Normalized solutions for a coupled Schrödinger system, Math Ann, 380, 1713-1740, 2021 · Zbl 1479.35762 · doi:10.1007/s00208-020-02000-w
[8] Bellazzini, J.; Boussaïd, N.; Jeanjean, L., Existence and stability of standing waves for supercritical NLS with a partial confinement, Comm Math Phys, 353, 229-251, 2017 · Zbl 1367.35150 · doi:10.1007/s00220-017-2866-1
[9] Bialynicki-Birula, I.; Mycielski, J., Wave equations with logarithmic nonlinearities, Bull Acad Polon Sci Sér Sci Math Astronom Phys, 23, 461-466, 1975
[10] Bialynicki-Birula, I.; Mycielski, J., Nonlinear wave mechanics, Ann Physics, 100, 62-93, 1976 · doi:10.1016/0003-4916(76)90057-9
[11] Brézis, H.; Lieb, E., A relation between pointwise convergence of functions and convergence of functionals, Proc Amer Math Soc, 88, 486-490, 1983 · Zbl 0526.46037 · doi:10.1090/S0002-9939-1983-0699419-3
[12] Brézis, H.; Nirenberg, L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm Pure Appl Math, 36, 437-477, 1983 · Zbl 0541.35029 · doi:10.1002/cpa.3160360405
[13] Carles, R.; Gallagher, I., Universal dynamics for the defocusing logarithmic Schrödinger equation, Duke Math J, 167, 1761-1801, 2018 · Zbl 1394.35467 · doi:10.1215/00127094-2018-0006
[14] Carles, R.; Pelinovsky, D., On the orbital stability of Gaussian solitary waves in the log-KdV equation, Nonlinearity, 27, 3185-3202, 2014 · Zbl 1319.35215 · doi:10.1088/0951-7715/27/12/3185
[15] Cazenave, T., Stable solutions of the logarithmic Schrödinger equation, Nonlinear Anal, 7, 1127-1140, 1983 · Zbl 0529.35068 · doi:10.1016/0362-546X(83)90022-6
[16] Chen, J.; Zhang, Q., Ground state solution of Nehari-Pohožaev type for periodic quasilinear Schrödinger system, J Math Phys, 61, 101510, 2020 · Zbl 1454.81058 · doi:10.1063/5.0014321
[17] Colin, M.; Jeanjean, L., Solutions for a quasilinear Schrödinger equation: A dual approach, Nonlinear Anal, 56, 213-226, 2004 · Zbl 1035.35038 · doi:10.1016/j.na.2003.09.008
[18] d’Avenia, P.; Montefusco, E.; Squassina, M., On the logarithmic Schrödinger equation, Commun Contemp Math, 16, 1350032, 2014 · Zbl 1292.35259 · doi:10.1142/S0219199713500326
[19] Deng, Y.; He, Q.; Pan, Y., The existence of positive solution for an elliptic problem with critical growth and logarithmic perturbation, Adv Nonlinear Stud, 23, 20220049, 2023 · Zbl 1512.35266 · doi:10.1515/ans-2022-0049
[20] Deng, Y.; Pi, H.; Shuai, W., Multiple solutions for logarithmic Schrödinger equations with critical growth, Methods Appl Anal, 28, 221-248, 2021 · Zbl 1512.35267 · doi:10.4310/MAA.2021.v28.n2.a6
[21] Gou, T.; Jeanjean, L., Multiple positive normalized solutions for nonlinear Schröodinger systems, Nonlinearity, 31, 2319-2345, 2018 · Zbl 1396.35009 · doi:10.1088/1361-6544/aab0bf
[22] Jeanjean, L., Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal, 28, 1633-1659, 1997 · Zbl 0877.35091 · doi:10.1016/S0362-546X(96)00021-1
[23] Jeanjean, L.; Lu, S., Normalized solutions with positive energies for a coercive problem and application to the cubic-quintic nonlinear Schröodinger equation, Math Models Methods Appl Sci, 32, 1557-1588, 2022 · Zbl 1497.35434 · doi:10.1142/S0218202522500361
[24] Lieb, E.; Loss, M., Analysis, 2001, Providence: Amer Math Soc, Providence · Zbl 0966.26002
[25] Liu, J.; Wang, Y.; Wang, Z., Solutions for quasilinear Schröodinger equations via the Nehari method, Comm Partial Differential Equations, 29, 879-901, 2004 · Zbl 1140.35399 · doi:10.1081/PDE-120037335
[26] Molle, R.; Riey, G.; Verzini, G., Normalized solutions to mass supercritical Schröodinger equations with negative potential, J Differential Equations, 333, 302-331, 2022 · Zbl 1496.35181 · doi:10.1016/j.jde.2022.06.012
[27] Noris, B.; Tavares, H.; Verzini, G., Existence and orbital stability of the ground states with prescribed mass for the L^2-critical and supercritical NLS on bounded domains, Anal PDE, 7, 1807-1838, 2014 · Zbl 1314.35168 · doi:10.2140/apde.2014.7.1807
[28] Noris, B.; Tavares, H.; Verzini, G., Stable solitary waves with prescribed L^2-mass for the cubic Schrödinger system with trapping potentials, Discrete Contin Dyn Syst, 35, 6085-6112, 2015 · Zbl 1336.35321 · doi:10.3934/dcds.2015.35.6085
[29] Noris, B.; Tavares, H.; Verzini, G., Normalized solutions for nonlinear Schroödinger systems on bounded domains, Nonlinearity, 32, 1044-1072, 2019 · Zbl 1410.35211 · doi:10.1088/1361-6544/aaf2e0
[30] Pierotti, D.; Verzini, G., Normalized bound states for the nonlinear Schröodinger equation in bounded domains, Calc Var Partial Differential Equations, 56, 133, 2017 · Zbl 1420.35374 · doi:10.1007/s00526-017-1232-7
[31] Poppenberg, M.; Schmitt, K.; Wang, Z-Q, On the existence of soliton solutions to quasilinear Schröodinger equations, Calc Var Partial Differential Equations, 14, 329-344, 2002 · Zbl 1052.35060 · doi:10.1007/s005260100105
[32] Serrin, J.; Tang, M., Uniqueness of ground states for quasilinear elliptic equations, Indiana Univ Math J, 49, 897-923, 2000 · Zbl 0979.35049 · doi:10.1512/iumj.2000.49.1893
[33] Shuai, W., Multiple solutions for logarithmic Schröodinger equations, Nonlinearity, 32, 2201-2225, 2019 · Zbl 1418.35102 · doi:10.1088/1361-6544/ab08f4
[34] Squassina, M.; Szulkin, A., Multiple solutions to logarithmic Schröodinger equations with periodic potential, Calc Var Partial Differential Equations, 54, 585-597, 2015 · Zbl 1326.35358 · doi:10.1007/s00526-014-0796-8
[35] Struwe, M., Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, 1990, Berlin: Springer, Berlin · Zbl 0746.49010 · doi:10.1007/978-3-662-02624-3
[36] Vázquez, J., A strong maximum principle for some quasilinear elliptic equations, Appl Math Optim, 12, 191-202, 1984 · Zbl 0561.35003 · doi:10.1007/BF01449041
[37] Wang, Z-Q; Zhang, C., Convergence from power-law to logarithm-law in nonlinear scalar field equations, Arch Ration Mech Anal, 231, 45-61, 2019 · Zbl 1406.35372 · doi:10.1007/s00205-018-1270-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.