×

Nonlinear scalar field \((p_1, p_2)\)-Laplacian equations in \(\mathbb{R}^N\): existence and multiplicity. (English) Zbl 07915536

Summary: In this paper, we deal with the following class of \((p_1, p_2)\)-Laplacian problems: \[ \begin{cases} -\Delta_{p_1}u - \Delta_{p_2}u = g(u)\text{ in }\mathbb{R}^N,\\ u\in W^{1, p_1}(\mathbb{R}^N)\cap W^{1, p_2}(\mathbb{R}^N), \end{cases} \] where \(N \geq 2\), \(1 < p_1 < p_2 \leq N\), \(\Delta_{p_i}\) is the \(p_i\)-Laplacian operator, for \(i=1, 2\), and \(g: \mathbb{R}\rightarrow\mathbb{R}\) is a Berestycki-Lions type nonlinearity. Using appropriate variational arguments, we obtain the existence of a ground state solution. In particular, we provide three different approaches to deduce this result. Finally, we prove the existence of infinitely many radially symmetric solutions. Our results improve and complement those that have appeared in the literature for this class of problems. Furthermore, the arguments performed throughout the paper are rather flexible and can be also applied to study other \(p\)-Laplacian and \((p_1, p_2)\)-Laplacian equations with general nonlinearities.

MSC:

35Jxx Elliptic equations and elliptic systems
35A15 Variational methods applied to PDEs
35J92 Quasilinear elliptic equations with \(p\)-Laplacian
35J60 Nonlinear elliptic equations

References:

[1] Adachi, S.; Tanaka, K., Trudinger type inequalities in \(\mathbb{R}^N\) and their best exponents, Proc. Amer. Math. Soc., 128, 7, 2051-2057, 2000 · Zbl 0980.46020 · doi:10.1090/S0002-9939-99-05180-1
[2] Adams, RA; Fournier, JJF, Sobolev spaces. Pure and Applied Mathematics (Amsterdam), xiv+305, 2003, Amsterdam: Elsevier/Academic Press, Amsterdam · Zbl 1098.46001
[3] Almgren, FJ Jr; Lieb, EH, Symmetric decreasing rearrangement is sometimes continuous, J. Amer. Math. Soc., 2, 4, 683-773, 1989 · Zbl 0688.46014 · doi:10.1090/S0894-0347-1989-1002633-4
[4] Alves, CO, Existence of positive solutions for a problem with lack of compactness involving the \(p\)-Laplacian, Nonlinear Anal., 51, 7, 1187-1206, 2002 · Zbl 1157.35355 · doi:10.1016/S0362-546X(01)00887-2
[5] Alves, CO; Figueiredo, GM, Multiplicity and concentration of positive solutions for a class of quasilinear problems, Adv. Nonlinear Stud., 11, 2, 265-294, 2011 · Zbl 1231.35006 · doi:10.1515/ans-2011-0203
[6] Ambrosetti, A.; Rabinowitz, PH, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14, 349-381, 1973 · Zbl 0273.49063 · doi:10.1016/0022-1236(73)90051-7
[7] Ambrosio, V., The nonlinear \((p, q)\)-Schrödinger equation with a general nonlinearity: existence and concentration, J. Math. Pures Appl. (9), 178, 141-184, 2023 · Zbl 1522.35028 · doi:10.1016/j.matpur.2023.07.008
[8] Ambrosio, V.; Essebei, F., Multiple solutions for double phase problems in \(\mathbb{R}^n\) via Ricceri’s principle, J. Math. Anal. Appl., 528, 1, 127513, 22, 2023 · Zbl 1525.35147 · doi:10.1016/j.jmaa.2023.127513
[9] Badiale, M.; Citti, G., Concentration compactness principle and quasilinear elliptic equations in \(\mathbb{R}^n\), Comm. Partial Differ. Equ., 16, 11, 1795-1818, 1991 · Zbl 0784.35024 · doi:10.1080/03605309108820823
[10] Bartolo, R.; Candela, AM; Salvatore, A., On a class of superlinear \((p, q)\)-Laplacian type equations on \(\mathbb{R}^N\), J. Math. Anal. Appl., 438, 1, 29-41, 2016 · Zbl 1334.35039 · doi:10.1016/j.jmaa.2016.01.049
[11] Berestycki, H.; Gallouët, T.; Kavian, O., Équations de champs scalaires euclidiens non linéaires dans le plan, C. R. Acad. Sci. Paris Sér. I Math., 297, 5, 307-310, 1983 · Zbl 0544.35042
[12] Berestycki, H.; Lions, P-L, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., 82, 4, 313-345, 1983 · Zbl 0533.35029 · doi:10.1007/BF00250555
[13] Berestycki, H.; Lions, P-L, Nonlinear scalar field equations. II. Existence of infinitely many solutions, Arch. Rational Mech. Anal., 82, 4, 347-375, 1983 · Zbl 0556.35046 · doi:10.1007/BF00250556
[14] Brézis, H.; Lieb, E., A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88, 3, 486-490, 1983 · Zbl 0526.46037 · doi:10.1090/S0002-9939-1983-0699419-3
[15] Byeon, J.; Jeanjean, L.; Mariş, M., Symmetry and monotonicity of least energy solutions, Calc. Var. Partial Differ. Equ., 36, 4, 481-492, 2009 · Zbl 1226.35041 · doi:10.1007/s00526-009-0238-1
[16] Cherfils, L.; Il’yasov, V., On the stationary solutions of generalized reaction diffusion equations with \(p\) &\(q\)-Laplacian, Commun. Pure Appl. Anal., 4, 1, 9-22, 2005 · Zbl 1210.35090 · doi:10.3934/cpaa.2005.4.9
[17] Citti, G., Positive solutions for a quasilinear degenerate elliptic equation in \(\mathbb{R}^n\), Rend. Circ. Mat. Palermo (2), 35, 3, 364-375, 1986 · Zbl 0659.35039 · doi:10.1007/BF02843904
[18] Degiovanni, M.; Musesti, A.; Squassina, M., On the regularity of solutions in the Pucci-Serrin identity, Calc. Var. Partial Differ. Equ., 18, 3, 317-334, 2003 · Zbl 1046.35039 · doi:10.1007/s00526-003-0208-y
[19] do Ó, J.M., Medeiros, E.S.: Remarks on least energy solutions for quasilinear elliptic problems in \(\mathbb{R}^N\), Electron. J. Differ. Equ., No. 83, 14 (2003) · Zbl 1109.35318
[20] Ferrero, A.; Gazzola, F., On subcriticality assumptions for the existence of ground states of quasilinear elliptic equations, Adv. Differ. Equ., 8, 9, 1081-1106, 2003 · Zbl 1290.35096
[21] Figueiredo, GM, Existence of positive solutions for a class of \(p\) &\(q\) elliptic problems with critical growth on \(\mathbb{R}^N\), J. Math. Anal. Appl., 378, 507-518, 2011 · Zbl 1211.35114 · doi:10.1016/j.jmaa.2011.02.017
[22] Figueiredo, GM; Nunes, BMF, Existence of positive solutions for a class of quasilinear elliptic problems with exponential growth via the Nehari manifold method, Rev. Mat. Complut., 32, 1, 1-18, 2019 · Zbl 1412.35133 · doi:10.1007/s13163-018-0283-4
[23] He, C.; Li, G., The existence of a nontrivial solution to the \(p\) &\(q\)-Laplacian problem with nonlinearity asymptotic to \(u^{p-1}\) at infinity in \(\mathbb{R}^N \), Nonlinear Anal., 68, 5, 1100-1119, 2008 · Zbl 1148.35024 · doi:10.1016/j.na.2006.12.008
[24] He, C.; Li, G., The regularity of weak solutions to nonlinear scalar field elliptic equations containing \(p\) &\(q\)-Laplacians, Ann. Acad. Sci. Fenn. Math., 33, 2, 337-371, 2008 · Zbl 1159.35023
[25] Hirata, J.; Ikoma, N.; Tanaka, K., Nonlinear scalar field equations in \(\mathbb{R}^N \): mountain pass and symmetric mountain pass approaches, Topol. Methods Nonlinear Anal., 35, 2, 253-276, 2010 · Zbl 1203.35106
[26] Isernia, T.; Repovš, DD, Nodal solutions for double phase Kirchhoff problems with vanishing potentials Asymptot, Anal., 124, 3-4, 371-396, 2021 · Zbl 1505.35226
[27] Jeanjean, L., Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal., 28, 10, 1633-1659, 1997 · Zbl 0877.35091 · doi:10.1016/S0362-546X(96)00021-1
[28] Jeanjean, L., On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on \(\mathbb{R}^N\), Proc. Roy. Soc. Edinburgh Sect. A, 129, 4, 787-809, 1999 · Zbl 0935.35044 · doi:10.1017/S0308210500013147
[29] Jeanjean, L.; Tanaka, K., A remark on least energy solutions in \(\mathbb{R}^N\), Proc. Amer. Math. Soc., 131, 8, 2399-2408, 2003 · Zbl 1094.35049 · doi:10.1090/S0002-9939-02-06821-1
[30] Jeanjean, L.; Lu, S-S, Nonlinear scalar field equations with general nonlinearity, Nonlinear Anal., 190, 2020 · Zbl 1437.35216 · doi:10.1016/j.na.2019.111604
[31] Li, G.; Zhang, G., Multiple solutions for the \(p\) &\(q\)-Laplacian problem with critical exponent, Acta Math, Sci. Ser. B Engl. Ed., 29, 4, 903-918, 2009 · Zbl 1212.35125
[32] Lions, P-L, Symetrié et compacité dans les espaces de Sobolev, J. Funct. Anal., 49, 3, 315-334, 1982 · Zbl 0501.46032 · doi:10.1016/0022-1236(82)90072-6
[33] Lions, P-L, The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1, 4, 223-283, 1984 · Zbl 0704.49004 · doi:10.1016/s0294-1449(16)30422-x
[34] Marcellini, P., Growth conditions and regularity for weak solutions to nonlinear elliptic pdes, J. Math. Anal. Appl., 501, 1, 124408, 32, 2021 · Zbl 1512.35301 · doi:10.1016/j.jmaa.2020.124408
[35] Mederski, J., Nonradial solutions of nonlinear scalar field equations, Nonlinearity, 33, 12, 6349-6380, 2020 · Zbl 1465.35156 · doi:10.1088/1361-6544/aba889
[36] Mercuri, C.; Squassina, M., Global compactness for a class of quasi-linear elliptic problems, Manuscripta Math., 140, 1-2, 119-144, 2013 · Zbl 1278.35104 · doi:10.1007/s00229-012-0533-6
[37] Mercuri, C.; Willem, M., A global compactness result for the \(p\)-Laplacian involving critical nonlinearities, Discrete Contin. Dyn. Syst., 28, 2, 469-493, 2010 · Zbl 1193.35051 · doi:10.3934/dcds.2010.28.469
[38] Mingione, G.; Rădulescu, VD, Recent developments in problems with nonstandard growth and nonuniform ellipticity, J. Math. Anal. Appl., 501, 1, 2021 · Zbl 1467.49003 · doi:10.1016/j.jmaa.2021.125197
[39] Moser, J., A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic differential equations, Comm. Pure Appl. Math., 13, 457-468, 1960 · Zbl 0111.09301 · doi:10.1002/cpa.3160130308
[40] Palais, RS, The principle of symmetric criticality, Comm. Math. Phys., 69, 1, 19-30, 1979 · Zbl 0417.58007 · doi:10.1007/BF01941322
[41] Papageorgiou, NS; Rădulescu, VD; Repovš, DD, Nonlinear nonhomogeneous singular problems, Calc. Var. Partial Differ. Equ., 59, 1, 9-31, 2020 · Zbl 1453.35069 · doi:10.1007/s00526-019-1667-0
[42] Pomponio, A.; Watanabe, T., Some quasilinear elliptic equations involving multiple \(p\)-Laplacians, Indiana Univ. Math. J., 67, 6, 2199-2224, 2018 · Zbl 1417.35048 · doi:10.1512/iumj.2018.67.7523
[43] Simon, J.: Régularité de la solution d’une équation non linéaire dans \(\mathbb{R}^N \). Journées d’Analyse Non Linéaire (Proc. Conf., Besançon, 1977), pp. 205-227, Lecture Notes in Math., 665, Springer, Berlin (1978) · Zbl 0402.35017
[44] Struwe, M.: Variational methods, 4th edn., p. xx+302. Springer-Verlag, Berlin, (2008). Applications to nonlinear partial differential equations and Hamiltonian systems · Zbl 1284.49004
[45] Trudinger, NS, On Harnack type inequalities and their application to quasilinear elliptic equations, Comm. Pure Appl. Math., 20, 721-747, 1967 · Zbl 0153.42703 · doi:10.1002/cpa.3160200406
[46] Willem, M., Minimax theorems, Progress in Nonlinear Differential Equations and their Applications, 24, x+162, 1996, Boston, MA: Birkhäuser Boston Inc, Boston, MA · Zbl 0856.49001
[47] Yang, Y., Existence of positive solutions to quasi-linear elliptic equations with exponential growth in the whole Euclidean space, J. Funct. Anal., 262, 4, 1679-1704, 2012 · Zbl 1276.35087 · doi:10.1016/j.jfa.2011.11.018
[48] Zhikov, V.V.: Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat. 50(4), 675-710 (1986). English translation in Math. USSR-Izv. 29 (1987), no. 1, 33-66 · Zbl 0599.49031
[49] Zhikov, VV, On Lavrentiev’s phenomenon, Russ. J. Math. Phys., 3, 2, 249-269, 1995 · Zbl 0910.49020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.