×

Stability and bounded real lemmas of discrete-time MJLSs with the Markov chain on a Borel space. (English) Zbl 07913895

Summary: In this paper, exponential stability of discrete-time Markov jump linear systems (MJLSs) with the Markov chain on a Borel space \((\varTheta, \mathcal{B} (\varTheta))\) is studied, and bounded real lemmas (BRLs) are given. The work generalizes the results from the previous literature that considered only the Markov chain taking values in a countable set to the scenario of an uncountable set and provides unified approaches for describing exponential stability and \(H_\infty\) performance of MJLSs. This paper covers two kinds of exponential stabilities: one is exponential mean-square stability with conditioning (EMSSy-C), and the other is exponential mean-square stability (EMSSy). First, based on the infinite-dimensional operator theory, the equivalent conditions for determining these two kinds of stabilities are shown respectively by the exponentially stable evolutions generated by the corresponding bounded linear operators on different Banach spaces, which turn out to present the spectral criteria of EMSSy-C and EMSSy. Furthermore, the relationship between these two kinds of stabilities is discussed. Moreover, some easier-to-check criteria are established for EMSSy-C of MJLSs in terms of the existence of uniformly positive definite solutions of Lyapunov-type equations or inequalities. In addition, BRLs are given separately in terms of the existence of solutions of the \(\varTheta \)-coupled difference Riccati equation for the finite horizon case and algebraic Riccati equation for the infinite horizon case, which facilitates the \(H_\infty\) analysis of MJLSs with the Markov chain on a Borel space.

MSC:

93E15 Stochastic stability in control theory
93D23 Exponential stability
93C55 Discrete-time control/observation systems
93C05 Linear systems in control theory

References:

[1] Aberkane, S., Bounded real lemma for nonhomogeneous Markovian jump linear systems, IEEE Transactions on Automatic Control, 58, 3, 797-801, 2013 · Zbl 1369.93682
[2] Aberkane, S.; Dragan, V., On the existence of the stabilizing solution of generalized Riccati equations arising in zero-sum stochastic difference games: The time-varying case, Journal of Difference Equations and Applications, 26, 913-951, 2020 · Zbl 1453.91017
[3] Aberkane, S.; Dragan, V., A deterministic setting for the numerical computation of the stabilizing solutions of stochastic game-theoretic Riccati equations, Mathematics, 11, 2068, 2023
[4] Billingsley, P., Probability and measure, 1995, John Wiley & Sons, Inc: John Wiley & Sons, Inc New York · Zbl 0822.60002
[5] Cohn, D. L., Measure theory, 2013, Birkhäuser: Birkhäuser Basle · Zbl 1292.28002
[6] Costa, O. L.V.; Figueiredo, D. Z., Stochastic stability of jump discrete-time linear systems with Markov chain in a general Borel space, IEEE Transactions on Automatic Control, 59, 1, 223-227, 2014 · Zbl 1360.93735
[7] Costa, O. L.V.; Figueiredo, D. Z., LQ control of discrete-time jump systems with Markov chain in a general Borel space, IEEE Transactions on Automatic Control, 60, 9, 2530-2535, 2015 · Zbl 1360.93645
[8] Costa, O. L.V.; Figueiredo, D. Z., Quadratic control with partial information for discrete-time jump systems with Markov chain in a general Borel space, Automatica, 66, 73-84, 2016 · Zbl 1335.93148
[9] Costa, O. L.V.; Figueiredo, D. Z., Filtering \(\mathcal{S} \)-coupled algebraic Riccati equations for discrete-time Markov jump systems, Automatica, 83, 47-57, 2017 · Zbl 1373.93349
[10] Costa, O. L.V.; Fragoso, M. D., Discrete-time LQ-optimal control problems for infinite Markov jump parameter systems, IEEE Transactions on Automatic Control, 40, 12, 2076-2088, 1995 · Zbl 0843.93091
[11] Costa, O. L.V.; Fragoso, M. D.; Marques, R. P., Discrete-time Markov jump linear systems, 2005, Springer-Verlag: Springer-Verlag London · Zbl 1081.93001
[12] Dragan, V.; Morozan, T.; Stoica, A.-M., Mathematical methods in robust control of discrete-time linear stochastic systems, 2010, Springer-Verlag: Springer-Verlag New York · Zbl 1183.93001
[13] Dragan, V.; Morozan, T.; Stoica, A.-M., Mathematical methods in robust control of linear stochastic systems, 2013, Springer-Verlag: Springer-Verlag New York · Zbl 1296.93001
[14] Fang, Y.; Loparo, K. A., Stochastic stability of jump linear systems, IEEE Transactions on Automatic Control, 47, 7, 1204-1208, 2002 · Zbl 1364.93844
[15] Feng, X.; Loparo, K. A.; Ji, Y.; Chizeck, H. J., Stochastic stability properties of jump linear systems, IEEE Transactions on Automatic Control, 37, 1, 38-53, 1992 · Zbl 0747.93079
[16] Fragoso, M. D.; Baczynski, J., Stochastic versus mean square stability in continuous time linear infinite Markov jump parameter systems, Stochastic Analysis and Applications, 20, 2, 347-356, 2002 · Zbl 1029.93062
[17] Gao, X.; Deng, F.; Zhuang, H.; Zeng, P., Observer-based event-triggered asynchronous control of networked Markovian jump systems under deception attacks, Science China. Information Sciences, 66, Article 159204 pp., 2023
[18] Hou, T.; Liu, Y.; Deng, F., Stability for discrete-time uncertain systems with infinite Markov jump and time-delay, Science China. Information Sciences, 64, Article 152202 pp., 2021
[19] Hou, T.; Ma, H., Exponential stability for discrete-time infinite Markov jump systems, IEEE Transactions on Automatic Control, 61, 12, 4241-4246, 2016 · Zbl 1359.93514
[20] Hou, T.; Ma, H.; Zhang, W., Spectral tests for observability and detectability of periodic Markov jump systems with nonhomogeneous Markov chain, Automatica, 63, 175-181, 2016 · Zbl 1329.93124
[21] Jutinico, A. L.; Flórez-cediel, O.; Siqueira, A. A., Complementary stability of Markovian systems: Series elastic actuators and human-robot interaction, IFAC-PapersOnLine, 54, 4, 112-117, 2021
[22] Kallenberg, O., Foundations of modern probability, 2002, Springer-Verlag: Springer-Verlag New York · Zbl 0996.60001
[23] Kechris, A. S., Classical descriptive set theory, 1995, Springer-Verlag: Springer-Verlag New York · Zbl 0819.04002
[24] Kordonis, I.; Papavassilopoulos, G. P., On stability and LQ control of MJLS with a Markov chain with general state space, IEEE Transactions on Automatic Control, 59, 2, 535-540, 2014 · Zbl 1360.93744
[25] Li, C.; Chen, M. Z.Q.; Lam, J.; Mao, X., On exponential almost sure stability of random jump systems, IEEE Transactions on Automatic Control, 57, 12, 3064-3077, 2012 · Zbl 1369.93698
[26] Lin, Z.; Liu, J.; Zhang, W.; Niu, Y., Regional pole placement of wind turbine generator system via a Markovian approach, IET Control Theory & Applications, 10, 15, 1771-1781, 2016
[27] Liu, M.; Ho, D. W.; Niu, Y., Stabilization of Markovian jump linear system over networks with random communication delay, Automatica, 45, 2, 416-421, 2009 · Zbl 1158.93412
[28] Lutz, C. C.; Stilwell, D. J., Stability and disturbance attenuation for Markov jump linear systems with time-varying transition probabilities, IEEE Transactions on Automatic Control, 61, 5, 1413-1418, 2016 · Zbl 1359.93516
[29] Meyn, S.; Tweenie, R. L., Markov chain and stochatsic stability, 2009, Cambridge University Press: Cambridge University Press New York · Zbl 1165.60001
[30] Seiler, P.; Sengupta, R., A bounded real lemma for jump systems, IEEE Transactions on Automatic Control, 48, 9, 1651-1654, 2003 · Zbl 1364.93223
[31] Shi, T.; Shi, P.; Wu, Z., Dynamic event-triggered asynchronous MPC of Markovian jump systems with disturbances, IEEE Transactions on Cybernetics, 52, 11, 11639-11648, 2022
[32] Si, B.; Ni, Y.; Zhang, J., Time-inconsistent stochastic LQ problem with regime switching, Journal of Systems Science & Complexity, 33, 1733-1754, 2020 · Zbl 1460.93097
[33] Sworder, D.; Rogers, R., An LQ-solution to a control problem associated with a solar thermal central receiver, IEEE Transactions on Automatic Control, 28, 10, 971-978, 1983
[34] Todorov, M. G.; Fragoso, M. D., On the robust stability, stabilization, and stability radii of continuous-time infinite Markov jump linear systems, SIAM Journal on Control and Optimization, 49, 3, 1171-1196, 2011 · Zbl 1228.93040
[35] Todorov, M. G.; Fragoso, M. D.; Costa, O. L.V., Detector-based \(H_\infty\) results for discrete-time Markov jump linear systems with partial observations, Automatica, 91, 159-172, 2018 · Zbl 1387.93148
[36] Ungureanu, V. M., Stability, stabilizability and detectability for Markov jump discrete-time linear systems with multiplicative noise in Hilbert spaces, Optimization, 63, 11, 1689-1712, 2014 · Zbl 1297.93177
[37] Ungureanu, V. M.; Dragan, V.; Morozan, T., Global solutions of a class of discrete-time backward nonlinear equations on ordered Banach spaces with applications to Riccati equations of stochastic control, Optimal Control Applications & Methods, 34, 2, 164-190, 2013 · Zbl 1273.93044
[38] Wakaiki, M.; Ogura, M.; Hespanha, J. P., LQ-optimal sampled-data control under stochastic delays: Gridding approach for stabilizability and detectability, SIAM Journal on Control and Optimization, 56, 4, 2634-2661, 2018 · Zbl 1395.49030
[39] Wonham, W. M., On a matrix Riccati equation of stochastic control, SIAM Journal on Control and Optimization, 6, 4, 681-697, 1968 · Zbl 0182.20803
[40] Xue, M.; Yan, H.; Zhang, H.; Shen, H.; Shi, P., Dissipativity-based filter design for Markov jump systems with packet loss compensation, Automatica, 133, Article 109843 pp., 2021 · Zbl 1480.93430
[41] Zhang, L., \( H_\infty\) estimation for discrete-time piecewise homogeneous Markov jump linear systems, Automatica, 45, 11, 2570-2576, 2009 · Zbl 1180.93100
[42] Zhou, B.; Luo, W., Improved Razumikhin and Krasovskii stability criteria for time-varying stochastic time-delay systems, Automatica, 89, 382-391, 2018 · Zbl 1388.93103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.