×

Identifiability implies robust, globally exponentially convergent on-line parameter estimation. (English) Zbl 07913809

Summary: In this paper we propose a new parameter estimator that ensures global exponential convergence of linear regression models requiring only the necessary assumption of identifiability of the regression equation, which we show is equivalent to interval excitation of the regressor vector. An extension to – separable and monotonic – nonlinear parameterisations is also given. The estimators are shown to be robust to additive measurement noise and – not necessarily slow-parameter variations. Moreover, a version of the estimator that is robust with respect to sinusoidal disturbances with unknown internal model is given. Simulation results that illustrate the performance of the estimator compared with other algorithms are given.

MSC:

93E10 Estimation and detection in stochastic control theory
Full Text: DOI

References:

[1] Aranovskiy, S., Belov, A., Ortega, R., Barabanov, N., & Bobtsov, A. (2019). Parameter identification of linear time-invariant systems using dynamic regressor extension and mixing. International Journal of Adaptive Control and Signal Processing, 33(6), 1016-1030. · Zbl 1425.93266
[2] Aranovskiy, S., Bobtsov, A., Ortega, R., & Pyrkin, A. (2017). Performance enhancement of parameter estimators via dynamic regressor extension and mixing. IEEE Transactions on Automatic Control, 62(7), 3546-3550. (See also arXiv:1509.02763 for an extended version.) · Zbl 1370.93250
[3] Aranovskiy, S., Bobtsov, A., Pyrkin, A., Ortega, R., & Chaillet, A. (2015). Flux and position observer of permanent magnet synchronous motors with relaxed persistency of excitation conditions. IFAC-PapersOnLine, 48(11), 301-306.
[4] Barabanov, N., & Ortega, R. (2017). On global asymptotic stability of \(\dot x = \phi (t)\phi^\top (t)x\) with \(\phi (t)\) bounded and not persistently exciting. Systems and Control Letters, 109, 24-29. · Zbl 1377.93131
[5] Belov, A., Ortega, R., & Bobtsov, A. (2018, July 9-11). Guaranteed performance adaptive identification scheme of discrete-time systems using dynamic regressor extension and mixing. IFAC-PapersOnLine, 51(15), 1038-1043.
[6] Bobtsov, A., Ortega, R., Yi, B., & Nikolayev, N. (2022). Adaptive state estimation of state-affine systems with unknown time-varying parameters. International Journal of Control, 95(9), 2460-2472. · Zbl 1500.93037
[7] Bobtsov, A., Yi, B., Ortega, R., & Astolfi, A. (2021). Generation of new exciting regressors for consistent on-line estimation of a scalar parameter. IEEE Transactions on Automatic Control, 67(9), 4746-4753. · Zbl 1537.93704
[8] Boffi, N. M., & Slotine, J.-J. (2020, March). Higher-order algorithms and implicit regularization for nonlinearly parameterized adaptive control (MIT Int. Report). arXiv:1912.13154v3.
[9] Brunton, S., Proctor, J., & Kutz, J. (2016). Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proceedings of the National Academy of Sciences, 113(15), 3932-3937. · Zbl 1355.94013
[10] Cho, N., Shin, H., Kim, Y., & Tsourdos, A. (2018). Composite model reference adaptive control with parameter convergence under finite excitation. IEEE Transactions on Automatic Control, 63(3), 811-818. · Zbl 1390.93427
[11] Chowdhary, G., Yucelen, T., Muhlegg, M., & Johnson, E. N. (2013). Concurrent learning adaptive control of linear systems with exponentially convergent bounds. International Journal of Adaptive Control and Signal Processing, 27(4), 280-301. · Zbl 1272.93069
[12] Demidovich, B. P. (1961). Dissipativity of nonlinear systems of differential equations. Vestnik Moscow State University, Ser. Mat. Mekh., Part I-6, 19-27. Part II-1, (1962), pp. 3-8, (in Russian).
[13] Efimov, D., & Fradkov, A. (2015). Design of impulsive adaptive observers for improvement of persistency of excitation. International Journal of Adaptive Control and Signal Processing, 29(6), 765-782. · Zbl 1330.93046
[14] Egardt, B. (1979). Stability of adaptive controllers. Springer-Verlag. · Zbl 0482.93001
[15] Gerasimov, D., Ortega, R., & Nikiforov, V. (2018, July 9-11). Adaptive control of multivariable systems with reduced knowledge of high frequency gain: Application of dynamic regressor extension and mixing estimators. IFAC PapersOnLine, 51(15), 886-890.
[16] Goodwin, G., & Sin, K. (1984). Adaptive filtering prediction and control. Prentice-Hall. · Zbl 0653.93001
[17] Ioannou, P., & Kokotovic, P. (1984). Instability analysis and improvement of robustness of adaptive control. Automatica, 20(5), 583-594. · Zbl 0548.93050
[18] Ioannou, P., & Sun, J. (1996). Robust adaptive control. Prentice-Hall. · Zbl 0839.93002
[19] Jiang, Z. P., & Wang, Y. (2001). Input-to-state stability for discrete-time nonlinear systems. Automatica, 37(6), 857-869. · Zbl 0989.93082
[20] Kellett, C. M., & Dower, P. M. (2016). Input-to-state stability, integral input-to-state stability, and \(\mathcal{L}_2 \) -gain oroperties: Qualitative equivalences and interconnected systems. IEEE Transactions on Automatic Control, 61(1), 3-17. · Zbl 1359.93428
[21] Khalil, H. K. (2002). Nonlinear systems (3rd ed.). Prentice Hall. · Zbl 1003.34002
[22] Khargonekar, P., & Ortega, R. (1989). Comments on the robust stability analysis of adaptive controllers using normalizations. IEEE Transactions on Automatic Control, 34(4), 478-479. · Zbl 0665.93012
[23] Korotina, M., Romero, J. G., Aranovskiy, S., Bobtsov, A., & Ortega, R. (2022). A new on-line exponential parameter estimator without persistent excitation. Systems and Control Letters, 159, 105079. · Zbl 1485.93567
[24] Krause, J., & Khargonekar, P. (1987). Parameter information content of measurable signals in direct adaptive control. IEEE Transactions on Automatic Control, 32(9), 802-810. · Zbl 0634.93049
[25] Kreisselmeier, G. (1977). Adaptive observers with exponential rate of convergence. IEEE Transactions on Automatic Control, 22(1), 2-8. · Zbl 0346.93043
[26] Kreisselmeier, G., & Rietze-Augst, G. (1990). Richness and excitation on an interval – with application to continuous-time adaptive control. IEEE Transactions on Automatic Control, 35(2), 165-171. · Zbl 0705.93048
[27] Lewis, F., Vrabie, D., & Vamvoudakis, K. (2012). Reinforcement learning and feedback control: Using natural decision methods to design optimal adaptive controllers. IEEE Control Systems Magazine, 32(6), 76-105. · Zbl 1395.93584
[28] Lion, P. M. (1967). Rapid identification of linear and nonlinear systems. AIAA Journal, 5(10), 1835-1842.
[29] Ljung, L. (1987). System identification: Theory for the user. Prentice Hall. · Zbl 0615.93004
[30] Morse, A. S. (1992). A comparative study of normalized and unnormalized tuning errors in parameter adaptive control. International Journal of Adaptive Control and Signal Processing, 6(4), 309-318. · Zbl 0769.93045
[31] Narendra, K., & Annaswamy, A. (1989). Stable adaptive systems. Prentice-Hall. · Zbl 0758.93039
[32] Ortega, R. (1988). An on-line least-squares parameter estimator with finite convergence time. Proceedings of the IEEE, 76(7), 847-848.
[33] Ortega, R. (2021). Comments on recent claims about trajectories of control systems valid for particular initial conditions. Asian Journal of Control, 24(3), 1104-1111. · Zbl 07887038
[34] Ortega, R., Aranovskiy, S., Pyrkin, A., Astolfi, A, & Bobtsov, A. (2021). New results on parameter estimation via dynamic regressor extension and mixing: Continuous and discrete-time cases. IEEE Transactions on Automatic Control, 66(5), 2265-2272. · Zbl 1536.93890
[35] Ortega, R., Bobtsov, A., & Nikolayev, N. (2022). Parameter identification with finite-convergence time alertness preservation. IEEE Control Systems Letters, 6, 205-210.
[36] Ortega, R., Bobtsov, A., Nikolayev, N., Schiffer, J., & Dochain, D. (2021). Generalized parameter estimation-based observers: Application to power systems and chemical-biological reactors. Automatica, 129, 109635. · Zbl 1478.93227
[37] Ortega, R., Bobtsov, A., Pyrkin, A., & Aranovskiy, A. (2015). A parameter estimation approach to state observation of nonlinear systems. Systems and Control Letters, 85, 84-94. · Zbl 1322.93095
[38] Ortega, R., Gromov, V., Nuño, E., Pyrkin, A., & Romero, J. G. (2021). Parameter estimation of nonlinearly parameterized regressions: application to system identification and adaptive control. Automatica, 127, 109544. · Zbl 1461.93262
[39] Ortega, R., & Lozano-Leal, R. (1987). A note on direct adaptive control of systems with bounded disturbances. Automatica, 23(2), 253-254. · Zbl 0613.93038
[40] Ortega, R., Nikiforov, V., & Gerasimov, D. (2020). On modified parameter estimators for identification and adaptive control: a unified framework and some new schemes. IFAC Annual Reviews in Control, 50, 278-293.
[41] Ortega, R., Praly, L., & Landau, I. (1985). Robustness of discrete-time direct adaptive controllers. IEEE Transactions on Automatic Control, 30(12), 1179-1187. · Zbl 0588.93040
[42] Pan, Y., Aranovskiy, S., Bobtsov, A., & Yu, H. (2019). Efficient learning from adaptive control under sufficient excitation. International Journal of Robust and Nonlinear Control, 29(10), 3111-3124. · Zbl 1418.93280
[43] Pan, Y., & Yu, H. (2016). Composite learning from adaptive dynamic surface control. IEEE Transactions on Automatic Control, 61(9), 2603-2609. · Zbl 1359.93231
[44] Pan, Y., & Yu, H. (2018). Composite learning robot control with guaranteed parameter convergence. Automatica, 89, 398-406. · Zbl 1388.93063
[45] Pavlov, A., Pogromsky, A., van de Wouw, N., & Nijmeijer, H. (2004). Convergence dynamics, a tribute to Boris Pavlovich demidovich. Systems and Control Letters, 52(3-4), 257-261. · Zbl 1157.34333
[46] Praly, L. (1983, June 15-17). Robustness of model reference adaptive control. In Proceedings 3rd yale workshop on adaptive control.
[47] Praly, L. (2017). Convergence of the gradient algorithm for linear regression models in the continuous and discrete-time cases (Int. Rep. MINES ParisTech, Centre Automatique et Systèmes). hal.archives-ouvertes.fr/hal-01423048.
[48] Rohrs, C., Valavani, L., Athans, M., & Stein, G. (1985). Robustness of continuous-time adaptive control algorithms in the presence of unmodeled dynamics. IEEE Transactions on Automatic Control, 30(9), 881-889. · Zbl 0571.93042
[49] Roy, S. B., Bhasin, S., & Kar, I. N. (2018). Combined MRAC for unknown MIMO LTI systems with parameter convergence. IEEE Transactions on Automatic Control, 63(1), 283-290. · Zbl 1390.93453
[50] Rugh, W. J. (1996). Linear systems theory (2nd ed.). Prentice hall. · Zbl 0892.93002
[51] Sastry, S., & Bodson, M. (1989). Adaptive control: Stability, convergence and robustness. Prentice-Hall. · Zbl 0721.93046
[52] Tao, G. (2003). Adaptive control design and analysis. John Wiley & Sons. · Zbl 1061.93004
[53] Tyukin, I. Y., Prokhorov, D. V., & Leeuwen, C. V. (2007). Adaptation and parameter estimation in systems with unstable target dynamics and nonlinear parameterization. IEEE Transactions on Automatic Control, 52(9), 1543-1559. · Zbl 1366.93304
[54] Wang, L., Ortega, R., & Bobtsov, A. (2023). Observability is sufficient for the design of globally exponentially stable state observers for state-affine nonlinear systems. Automatica, 149, 110838. · Zbl 1515.93040
[55] Wu, Z., Ma, M., Xu, X., Liu, B., & Yu, Z. (2021). Predefined-time parameter estimation via modified dynamic regressor extension and mixing. Journal of the Franklin Institute, 358(13), 6897-6921. · Zbl 1470.93047
[56] Yi, B., Jin, C., Wang, L., Shi, G., & Manchester, I. R. (2021, December 13-15). An almost globally convergent observer for visual SLAM without persistent excitation. In 60th IEEE conference on decision and control. IEEE.
[57] Yi, B., Ortega, R., Wu, D., & Zhang, W. (2020). Orbital stabilization of nonlinear systems via Mexican sombrero energy pumping-and-damping injection. Automatica, 112, 108661. · Zbl 1430.93168
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.