×

A SAT attack on higher dimensional Erdős-Szekeres numbers. (English) Zbl 07912972

Nešetřil, Jaroslav (ed.) et al., Extended abstracts EuroComb 2021. European conference on combinatorics, graph theory and applications, virtual, September 6–10, 2021. Cham: Birkhäuser. Trends Math., Res. Perspect. CRM Barc. 14, 103-110 (2021).
Summary: A famous result by Erdős and Szekeres (1935) asserts that, for every \(k\), \(d \in \mathbb{N}\), there is a smallest integer \(n = g^{(d)}(k)\), such that every set of at least \(n\) points in \(\mathbb{R}^d\) in general position contains a k-gon, i.e., a subset of \(k\) points which is in convex position. We present a SAT model for higher dimensional point sets which is based on chirotopes, and use modern SAT solvers to investigate Erdős-Szekeres numbers in dimensions \(d=3,4,5\). We show \(g^{(3)}(7) \le 13\), \(g^{(4)}(8) \le 13\), and \(g^{(5)}(9) \le 13\), which are the first improvements for decades. For the setting of \(k\)-holes (i.e., \(k\)-gons with no other points in the convex hull), where \(h^{(d)}(k)\) denotes the minimum number \(n\) such that every set of at least \(n\) points in \(\mathbb{R}^d\) in general position contains a \(k\)-hole, we show \(h^{(3)}(7) \le 14\), \(h^{(4)}(8) \le 13\), and \(h^{(5)}(9) \le 13\). Moreover, all obtained bounds are sharp in the setting of chirotopes and we conjecture them to be sharp also in the original setting of point sets.
For the entire collection see [Zbl 1515.05009].

MSC:

05Cxx Graph theory

References:

[1] Biere, A.: CaDiCaL at the SAT Race 2019. In: Proceedings of SAT Race 2019 - Solver and Benchmark Descriptions, volume B-2019-1 of Department of Computer Science Series, pp. 8-9. University of Helsinki (2019)
[2] Bisztriczky, T., Harborth, H.: On empty convex polytopes. J. Geom. 52, 25-29 (1995) · Zbl 0818.52008
[3] Bisztriczky, T., Soltan, V.: Some Erdös-Szekeres type results about points in space. Monatshefte für Mathematik 118(1), 33-40 (1994) · Zbl 0811.52005
[4] Björner, A., Las Vergnas, M., White, N., Sturmfels, B., Ziegler, G.M.: Oriented Matroids. In: Encyclopedia of Mathematics and its Applications, 2 edn, vol. 46. Cambridge University Press (1999) · Zbl 0944.52006
[5] Bukh, B., Chao, T.-W., Holzman, R.: On convex holes in \(d\)-dimensional point sets (2020). arXiv:2007.08972
[6] Erdős, P.: Some more problems on elementary geometry. Aust. Math. Soc. Gaz. 5, 52-54 (1978) · Zbl 0417.52002
[7] Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compos. Math. 2, 463-470 (1935) · Zbl 0012.27010
[8] Erdős, P., Szekeres, G.: On some extremum problems in elementary geometry. Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 3-4, 53-63 (1960)
[9] Fulek, R., Gärtner, B., Kupavskii, A., Valtr, P., Wagner, U.: The crossing tverberg theorem. In: 35th International Symposium on Computational Geometry (SoCG 2019), Leibniz International Proceedings in Informatics (LIPIcs), vol. 129, pp. 38:1-38:13. Schloss Dagstuhl (2019) · Zbl 07559238
[10] Gerken, T.: Empty convex hexagons in planar point sets. Discret. Comput. Geom. 39, 239-272 (2007). https://doi.org/10.1007/s00454-007-9018-x · Zbl 1184.52016
[11] Harborth, H.: Konvexe Fünfecke in ebenen Punktmengen. Elem. Math. 33, 116-118 (1978) · Zbl 0397.52005
[12] Holmsen, A.F., Mojarrad, H.N., Pach, J., Tardos, G.: Two extensions of the Erdős-Szekeres problem. J. Eur. Math. Soc. 3981-3995 (2020) · Zbl 1454.52015
[13] Horton, J.: Sets with no empty convex \(7\)-gons. Can. Math. Bull. 26, 482-484 (1983) · Zbl 0521.52010
[14] Kalbfleisch, J.D., Kalbfleisch, J.G., Stanton, R.G.: A combinatorial problem on convex \(n\)-gons. In: Louisiana Conference on Combinatorics, Graph Theory, and Computing, pp. 180-188 (1970) · Zbl 0223.52009
[15] Károlyi, G.: Ramsey-remainder for convex sets and the Erdős-Szekeres theorem. Discret. Appl. Math. 109(1), 163-175 (2001). Part of special issue of the 14th European Workshop on Computational Geometry · Zbl 0974.52014
[16] Károlyi, G., Valtr, P.: Point configurations in \(d\)-space without large subsets in convex position. Discret. Comput. Geom. 30(2), 277-286 (2003) · Zbl 1051.52012
[17] Koshelev, V.A.: On Erdős-Szekeres problem for empty hexagons in the plane. Modelirovanie i Analiz Informatsionnykh Sistem 16(2), 22-74 (2009)
[18] Marić, F.: Fast formal proof of the Erdős-Szekeres conjecture for convex polygons with at most 6 points. J. Autom. Reason. 62, 301-329 (2019). https://doi.org/10.1007/s10817-017-9423-7 · Zbl 1468.68302
[19] Morris, W., Soltan, V.: The Erdős-Szekeres problem on points in convex position - a survey. Bulletin AMS. New Ser. 37(4), 437-458 (2000) · Zbl 0958.52018
[20] Nicolas, C.M.: The empty hexagon theorem. Discret. Comput. Geom. 38(2), 389-397 (2007). https://doi.org/10.1007/s00454-007-1343-6 · Zbl 1146.52010
[21] Overmars, M.: Finding sets of points without empty convex 6-gons. Discret. Comput. Geom. 29(1), 153-158 (2002). https://doi.org/10.1007/s00454-002-2829-x · Zbl 1019.52010
[22] Scheucher, M.: Webpage: a SAT attack on higher dimensional Erdős-Szekeres numbers. http://page.math.tu-berlin.de/ scheuch/suppl/ES/highdim/
[23] Scheucher, M.: Two disjoint 5-holes in point sets. Comput. Geom. 91, 101670 (2020) · Zbl 1474.68428
[24] Suk, A.: On the Erdős-Szekeres convex polygon problem. J. AMS 30, 1047-1053 (2017) · Zbl 1370.52032
[25] Szekeres, G., Peters, L.: Computer solution to the 17-point Erdős-Szekeres problem. Aust. N. Z. Ind. Appl. Math. 48(2), 151-164 (2006) · Zbl 1152.52008
[26] Tóth, G., Valtr, P.: The Erdős-Szekeres theorem: upper bounds and related results. In: Combinatorial and Computational Geometry, vol. 52, pp. 557-568. MSRI Publications, Cambridge Univ. Press (2005) · Zbl 1090.52014
[27] Valtr, P.: Sets in \(\mathbb{R}^d\) with no large empty convex subsets. Discret. Math. 108(1), 115-124 (1992) · Zbl 0766.52003
[28] Wetzler, N., Heule, M.J.H., Hunt, W.A.: DRAT-trim: efficient checking and trimming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 422-429. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09284-3_31 · Zbl 1423.68475
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.