×

Statistical methods for gene-environment interaction analysis. (English) Zbl 07912684

MSC:

62-08 Computational methods for problems pertaining to statistics

References:

[1] Albert, P. S., Ratnasinghe, D., Tangrea, J., & Wacholder, S. (2001). Limitations of the case‐only Design for Identifying Gene‐Environment Interactions. American Journal of Epidemiology, 154(8), 687-693. https://doi.org/10.1093/aje/154.8.687 · doi:10.1093/aje/154.8.687
[2] Arold, B. W., Hufe, P., & Stoeckli, M. (2022). Genetic endowments, educational outcomes and the mediating influence of school investments. CESifo Working Paper No. 9841.
[3] Aschard, H., Lutz, S., Maus, B., Duell, E. J., Fingerlin, T. E., Chatterjee, N., Kraft, P., & vanSteen, K. (2012). Challenges and opportunities in genome‐wide environmental interaction (GWEI) studies. Human Genetics, 131(10), 1591-1613.
[4] Barcellos, S. H., Carvalho, L. S., & Turley, P. (2018). Education can reduce health differences related to genetic risk of obesity. Proceedings of the National Academy of Sciences, 115(42), E9765-E9772.
[5] Barth, D., Papageorge, N. W., & Thom, K. (2020). Genetic endowments and wealth inequality. Journal of Political Economy, 128(4), 1474-1522.
[6] Bergeman, C., Plomin, R., McClearn, G., Pedersen, N. L., & Friberg, L. T. (1988). Genotype€ nvironment interaction in personality development: Indentical twins reared apart. Psychology and Aging, 3(4), 399-406.
[7] Bernabeu, E., Canela‐Xandri, O., Rawlik, K., Talenti, A., Prendergast, J., & Tenesa, A. (2021). Sex differences in genetic architecture in the UK Biobank. Nature Genetics, 53(9), 1283-1289.
[8] Bi, W., Zhao, Z., Dey, R., Fritsche, L. G., Mukherjee, B., & Lee, S. (2019). A fast and accurate method for genome‐wide scale phenome‐wide G × E analysis and its application to UK biobank. The American Journal of Human Genetics, 105(6), 1182-1192.
[9] Biroli, P., Galama, T. J., vonHinke, S., vanKippersluis, H., Rietveld, C. A., & Thom, K. (2022). The economics and econometrics of gene‐environment interplay. arXiv Preprint. https://doi.org/10.48550/arXiv.2203.00729 · doi:10.48550/arXiv.2203.00729
[10] Blokland, G. A. M., Grove, J., Chen, C.‐Y., Cotsapas, C., Tobet, S., Handa, R., Schizophrenia Working Group of the Psychiatric Genomics Consortium, St Clair, D., Lencz, T., Mowry, B. J., Periyasamy, S., Cairns, M. J., Tooney, P. A., Wu, J. Q., Kelly, B., Kirov, G., Sullivan, P. F., Corvin, A., Riley, B. P., … Goldstein, J. M. (2022). Sex‐dependent shared and nonshared genetic architecture across mood and psychotic disorders. Biological Psychiatry, 91(1), 102-117. https://doi.org/10.1016/j.biopsych.2021.02.972 · doi:10.1016/j.biopsych.2021.02.972
[11] Boyle, E. A., Li, Y. I., & Pritchard, J. K. (2017). An expanded view of complex traits: From polygenic to Omnigenic. Cell, 169(7), 1177-1186.
[12] Bulik‐Sullivan, B. K., Loh, P.‐R., Finucane, H. K., Ripke, S., Yang, J., Patterson, N., Daly, M. J., Price, A. L., & Neale, B. M. (2015). LD score regression distinguishes confounding from polygenicity in genome‐wide association studies. Nature Genetics, 47(3), 291-295.
[13] Carbone, M., Arron, S. T., Beutler, B., Bononi, A., Cavenee, W., Cleaver, J. E., Croce, C. M., D’Andrea, A., Foulkes, W. D., Gaudino, G., Groden, J. L., Henske, E. P., Hickson, I. D., Hwang, P. M., Kolodner, R. D., Mak, T. W., Malkin, D., Monnat, R. J., Jr., Novelli, F., … Yang, H. (2020). Tumour predisposition and cancer syndromes as models to study gene-environment interactions. Nature Reviews Cancer, 20(9), 533-549.
[14] Carbone, M., Emri, S., Dogan, A. U., Steele, I., Tuncer, M., Pass, H. I., & Baris, Y. I. (2007). A mesothelioma epidemic in Cappadocia: Scientific developments and unexpected social outcomes. Nature Reviews Cancer, 7(2), 147-154.
[15] Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., McClay, J., Mill, J., Martin, J., Braithwaite, A., & Poulton, R. (2003). Influence of life stress on depression: Moderation by a polymorphism in the 5‐HTT gene. Science, 301(5631), 386-389.
[16] Chen, Y.‐H., Chatterjee, N., & Carroll, R. J. (2009). Shrinkage estimators for robust and efficient inference in haplotype‐based case‐control studies. Journal of the American Statistical Association, 104(485), 220-233. · Zbl 1388.62054
[17] Dahl, A., Nguyen, K., Cai, N., Gandal, M. J., Flint, J., & Zaitlen, N. (2020). A robust method uncovers significant context‐specific heritability in diverse complex traits. The American Journal of Human Genetics, 106(1), 71-91.
[18] Dick, D. M. (2011). Gene‐environment interaction in psychological traits and disorders. Annual Review of Clinical Psychology, 7, 383-409.
[19] Dick, D. M., Agrawal, A., Keller, M. C., Adkins, A., Aliev, F., Monroe, S., Hewitt, J. K., Kendler, K. S., & Sher, K. J. (2015). Candidate gene‐environment interaction research: Reflections and recommendations. Perspectives on Psychological Science, 10(1), 37-59. https://doi.org/10.1177/1745691614556682 · doi:10.1177/1745691614556682
[20] Domingue, B. W., Trejo, S., Armstrong‐Carter, E., & Tucker‐Drob, E. M. (2020). Interactions between polygenic scores and environments: Methodological and conceptual challenges. Sociological Science, 7, 465-486.
[21] Döring, A., Gieger, C., Mehta, D., Gohlke, H., Prokisch, H., Coassin, S., Fischer, G., Henke, K., Klopp, N., Kronenberg, F., Paulweber, B., Pfeufer, A., Rosskopf, D., Völzke, H., Illig, T., Meitinger, T., Wichmann, H. E., & Meisinger, C. (2008). SLC2A9 influences uric acid concentrations with pronounced sex‐specific effects. Nature Genetics, 40(4), 430-436.
[22] Dudbridge, F., & Fletcher, O. (2014). Gene‐environment dependence creates spurious gene‐environment interaction. The American Journal of Human Genetics, 95(3), 301-307.
[23] Finucane, H. K., Bulik‐Sullivan, B., Gusev, A., Trynka, G., Reshef, Y., Loh, P.‐R., Anttila, V., Xu, H., Zang, C., Farh, K., Ripke, S., Day, F. R., ReproGen Consortium; Schizophrenia Working Group of the Psychiatric Genomics Consortium; RACI Consortium, Purcell, S., Stahl, E., Lindstrom, S., Perry, J. R., Okada, Y., Raychaudhuri, S., … Price, A. L. (2015). Partitioning heritability by functional annotation using genome‐wide association summary statistics. Nature Genetics, 47(11), 1228-1235. https://doi.org/10.1038/ng.3404 · doi:10.1038/ng.3404
[24] Freeman, G. (1973). Statistical methods for the analysis of genotype‐environment interactions. Heredity, 31(3), 339-354.
[25] Gauderman, W. J., Mukherjee, B., Aschard, H., Hsu, L., Lewinger, J. P., Patel, C. J., Witte, J. S., Amos, C., Tai, C. G., Conti, D., Torgerson, D. G., Lee, S., & Chatterjee, N. (2017). Update on the state of the science for analytical methods for gene‐environment interactions. American Journal of Epidemiology, 186(7), 762-770. https://doi.org/10.1093/aje/kwx228 · doi:10.1093/aje/kwx228
[26] Jaffee, S. R., & Price, T. S. (2007). Gene-environment correlations: A review of the evidence and implications for prevention of mental illness. Molecular Psychiatry, 12(5), 432-442.
[27] Kerin, M., & Marchini, J. (2020). Inferring gene‐by‐environment interactions with a Bayesian whole‐genome regression model. The American Journal of Human Genetics, 107(4), 698-713.
[28] Li, D., & Conti, D. V. (2009). Detecting gene‐environment interactions using a combined case‐only and case‐control approach. American Journal of Epidemiology, 169(4), 497-504.
[29] Li, J., Li, X., Zhang, S., & Snyder, M. (2019). Gene‐environment interaction in the era of precision medicine. Cell, 177(1), 38-44.
[30] Marderstein, A. R., Davenport, E. R., Kulm, S., vanHout, C. V., Elemento, O., & Clark, A. G. (2021). Leveraging phenotypic variability to identify genetic interactions in human phenotypes. The American Journal of Human Genetics, 108(1), 49-67.
[31] Martin, J., Khramtsova, E. A., Goleva, S. B., Blokland, G. A., Traglia, M., Walters, R. K., Hübel, C., Coleman, J. R. I., Breen, G., Børglum, A. D., Demontis, D., Grove, J., Werge, T., Bralten, J., Bulik, C. M., Lee, P. H., Mathews, C. A., Peterson, R. E., Winham, S. J., … Davis, L. K. (2021). Examining sex‐differentiated genetic effects across neuropsychiatric and behavioral traits. Biological Psychiatry, 89(12), 1127-1137.
[32] Mbatchou, J., Barnard, L., Backman, J., Marcketta, A., Kosmicki, J. A., Ziyatdinov, A., Benner, C., O’Dushlaine, C., Barber, M., Boutkov, B., Habegger, L., Ferreira, M., Baras, A., Reid, J., Abecasis, G., Maxwell, E., & Marchini, J. (2021). Computationally efficient whole‐genome regression for quantitative and binary traits. Nature Genetics, 53(7), 1097-1103. https://doi.org/10.1038/s41588-021-00870-7 · doi:10.1038/s41588-021-00870-7
[33] Meisner, A., Kundu, P., & Chatterjee, N. (2019). Case‐only analysis of gene‐environment interactions using polygenic risk scores. American Journal of Epidemiology, 188(11), 2013-2020. https://doi.org/10.1093/aje/kwz175 · doi:10.1093/aje/kwz175
[34] Miao, J., Guo, H., Song, G., Zhao, Z., Hou, L., & Lu, Q. (2023). Quantifying portable genetic effects and improving cross‐ancestry genetic prediction with GWAS summary statistics. Nature Communications, 14(1), 832. https://doi.org/10.1038/s41467-023-36544-7 · doi:10.1038/s41467-023-36544-7
[35] Miao, J., Lin, Y., Wu, Y., Zheng, B., Schmitz, L. L., Fletcher, J. M., & Lu, Q. (2022). A quantile integral linear model to quantify genetic effects on phenotypic variability. Proceedings of the National Academy of Sciences, 119(39), e2212959119. https://doi.org/10.1073/pnas.2212959119 · doi:10.1073/pnas.2212959119
[36] Miao, J., Song, G., Wu, Y., Hu, J., Wu, Y., Basu, S., Andrews, J. S., Schaumberg, K., Fletcher, J. M., Schmitz, L. L., & Lu, Q. (2022). Reimagining gene‐environment interaction analysis for human complex traits. bioRxiv Preprints. https://doi.org/10.1101/2022.12.11.519973 · doi:10.1101/2022.12.11.519973
[37] Moore, R., Casale, F. P., Jan Bonder, M., Horta, D., Franke, L., Barroso, I., & Stegle, O. (2019). A linear mixed‐model approach to study multivariate gene-environment interactions. Nature Genetics, 51(1), 180-186.
[38] Mostafavi, H., Harpak, A., Agarwal, I., Conley, D., Pritchard, J. K., & Przeworski, M. (2020). Variable prediction accuracy of polygenic scores within an ancestry group. eLife, 9, e48376.
[39] Mukherjee, B., & Chatterjee, N. (2008). Exploiting gene‐environment independence for analysis of case‐control studies: An empirical Bayes‐type shrinkage estimator to trade‐off between bias and efficiency. Biometrics, 64(3), 685-694. https://doi.org/10.1111/j.1541-0420.2007.00953.x · Zbl 1190.62185 · doi:10.1111/j.1541-0420.2007.00953.x
[40] Ni, G., van derWerf, J., Zhou, X., Hyppönen, E., Wray, N. R., & Lee, S. H. (2019). Genotype-covariate correlation and interaction disentangled by a whole‐genome multivariate reaction norm model. Nature Communications, 10(1), 1-15.
[41] Piegorsch, W. W., Weinberg, C. R., & Taylor, J. A. (1994). Non‐hierarchical logistic models and case‐only designs for assessing susceptibility in population‐based case‐control studies. Statistics in Medicine, 13(2), 153-162. https://doi.org/10.1002/sim.4780130206 · doi:10.1002/sim.4780130206
[42] Purcell, S., Neale, B., Todd‐Brown, K., Thomas, L., Ferreira, M. A., Bender, D., Maller, J., Sklar, P., deBakker, P. I., Daly, M. J., & Sham, P. C. (2007). PLINK: A tool set for whole‐genome association and population‐based linkage analyses. The American Journal of Human Genetics, 81(3), 559-575.
[43] Robinson, M. R., English, G., Moser, G., Lloyd‐Jones, L. R., Triplett, M. A., Zhu, Z., Nolte, I. M., vanVliet‐Ostaptchouk, J. V., Snieder, H., LifeLines Cohort Study, Esko, T., Milani, L., Mägi, R., Metspalu, A., Magnusson, P. K. E., Pedersen, N. L., Ingelsson, E., Johannesson, M., Yang, J., … Visscher, P. M. (2017). Genotype-covariate interaction effects and the heritability of adult body mass index. Nature Genetics, 49(8), 1174-1181.
[44] Schmitz, L. L., & Conley, D. (2017). The effect of Vietnam‐era conscription and genetic potential for educational attainment on schooling outcomes. Economics of Education Review, 61, 85-97.
[45] Schmitz, L. L., Zhao, W., Ratliff, S. M., Goodwin, J., Miao, J., Lu, Q., Guo, X., Taylor, K. D., Ding, J., Liu, Y., Levine, M., & Smith, J. A. (2022). The socioeconomic gradient in epigenetic ageing clocks: Evidence from the multi‐ethnic study of atherosclerosis and the health and retirement study. Epigenetics, 17(6), 589-611.
[46] Shin, J., & Lee, S. H. (2021). GxEsum: A novel approach to estimate the phenotypic variance explained by genome‐wide GxE interaction based on GWAS summary statistics for biobank‐scale data. Genome Biology, 22(1), 1-17.
[47] Thomas, D. (2010). Gene-environment‐wide association studies: Emerging approaches. Nature Reviews Genetics, 11(4), 259-272. https://doi.org/10.1038/nrg2764 · doi:10.1038/nrg2764
[48] Turkheimer, E., Haley, A., Waldron, M., d’Onofrio, B., & Gottesman, I. I. (2003). Socioeconomic status modifies heritability of IQ in young children. Psychological Science, 14(6), 623-628.
[49] Wang, H., Zhang, F., Zeng, J., Wu, Y., Kemper, K. E., Xue, A., Zhang, M., Powell, J. E., Goddard, M. E., Wray, N. R., Visscher, P. M., McRae, A. F., & Yang, J. (2019). Genotype‐by‐environment interactions inferred from genetic effects on phenotypic variability in the UK biobank. Science Advances, 5(8), eaaw3538.
[50] Wang, Z., Shi, W., Carroll, R. J., & Chatterjee, N. (2023). Joint modeling of gene‐environment correlations and interactions using polygenic risk scores in case‐control studies. bioRxiv Preprints. https://doi.org/10.1101/2023.02.14.528572 · doi:10.1101/2023.02.14.528572
[51] Yang, J., Benyamin, B., McEvoy, B. P., Gordon, S., Henders, A. K., Nyholt, D. R., Madden, P. A., Heath, A. C., Martin, N. G., Montgomery, G. W., Goddard, M. E., & Visscher, P. M. (2010). Common SNPs explain a large proportion of the heritability for human height. Nature Genetics, 42(7), 565-569. https://doi.org/10.1038/ng.608 · doi:10.1038/ng.608
[52] Young, A. I., Wauthier, F., & Donnelly, P. (2016). Multiple novel gene‐by‐environment interactions modify the effect of FTO variants on body mass index. Nature Communications, 7(1), 12724.
[53] Young, A. I., Wauthier, F. L., & Donnelly, P. (2018). Identifying loci affecting trait variability and detecting interactions in genome‐wide association studies. Nature Genetics, 50(11), 1608-1614.
[54] Zhong, W., Chhibber, A., Luo, L., Mehrotra, D. V., & Shen, J. (2023). A fast and powerful linear mixed model approach for genotype‐environment interaction tests in large‐scale GWAS. Briefings in Bioinformatics, 24(1), bbac547.
[55] Zhu, C., Ming, M. J., Cole, J. M., Edge, M. D., Kirkpatrick, M., & Harpak, A. (2023). Amplification is the primary mode of gene‐by‐sex interaction in complex human traits. Cell Genomics, 3(5), 100297.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.