×

Enhanced entropy generation and heat transfer characteristics of magnetic nano-encapsulated phase change materials in latent heat thermal energy storage systems. (English) Zbl 07912650

MSC:

82D80 Statistical mechanics of nanostructures and nanoparticles
Full Text: DOI

References:

[1] Chamkha, A. J.; Armaghani, T.; Mansour, M. A.; Rashad, A. M.; Kargar-Sharifabad, H., Mhd convection of an Al_2O_3-Cu/water hybrid nanofluid in an inclined porous cavity with internal heat generation/absorption, Iranian Journal of Chemistry and Chemical Engineering, 41, 30, 936-956, 2021
[2] Chamkha, A.; Abdelrahman, Z.; Mansour, M.; Armaghani, T.; Rashad, A. M., Effects of magnetic field inclination and internal heat sources on nanofluid heat transfer and entropy generation in a double lid driven L-shaped cavity, Thermal Science, 25, 2, 1033-1046, 2021 · doi:10.2298/TSCI190217325C
[3] Ghalambaz, M.; Hashem Zadeh, S. M.; Veismoradi, A.; Sheremet, M. A.; Pop, I., Free convection heat transfer and entropy generation in an odd-shaped cavity filled with a Cu-Al_2O_3 hybrid nanofluid, Symmetry, 13, 1, 122, 2021 · doi:10.3390/sym13010122
[4] Alsabery, A. I.; Hashim, I.; Hajjar, A.; Ghalambaz, M.; Nadeem, S.; Saffari Pour, M., Entropy generation and natural convection flow of hybrid nanofluids in a partially divided wavy cavity including solid blocks, Energies, 13, 11, 2942, 2020 · doi:10.3390/en13112942
[5] Sreedevi, P.; Sudarsana Reddy, P., Impact of convective boundary condition on heat and mass transfer of nanofluid flow over a thin needle filled with carbon nanotubes, Journal of Nanofluids, 9, 4, 282-292, 2020 · doi:10.1166/jon.2020.1751
[6] Sreedevi, P.; Sudarsana Reddy, P., Combined influence of Brownian motion and thermophoresis on Maxwell three-dimensional nanofluid flow over stretching sheet with chemical reaction and thermal radiation, Journal of Porous Media, 23, 4, 327-340, 2020 · doi:10.1615/JPorMedia.2020027982
[7] Sheremet, M.; Pop, I.; Öztop, H. F.; Abu-Hamdeh, N., Natural convection of nanofluid inside a wavy cavity with a non-uniform heating, International Journal of Numerical Methods for Heat and Fluid Flow, 27, 4, 958-980, 2017 · doi:10.1108/HFF-02-2016-0063
[8] Sheremet, M. A.; Öztop, H. F., Impact of porous complicated fin and sinusoidal-heated wall on thermogravitational convection of different nanofluids in a square domain, International Journal of Thermal Sciences, 168, 107053, 2021 · doi:10.1016/j.ijthermalsci.2021.107053
[9] Nazia, S.; Seshaiah, B.; Sudarsana Reddy, P.; Sreedevi, P., Silver-ethylene glycol and copper-ethylene glycol based thermally radiative nanofluid characteristics between two rotating stretchable disks with modified Fourier heat flux, Heat Transfer, 52, 1, 289-316, 2022 · doi:10.1002/htj.22695
[10] Sudarsana Reddy, P.; Chamkha, A., Heat and mass transfer analysis in natural convection flow of nanofluid over a vertical cone with chemical reaction, International Journal of Numerical Methods for Heat and Fluid Flow, 27, 1, 2-22, 2017 · doi:10.1108/HFF-10-2015-0412
[11] Hashemi-Tilehnoee, M.; Dogonchi, A. S.; Seyyedi, S. M.; Sharifpur, M., Magneto-fluid dynamic and second law analysis in a hot porous cavity filled by nanofluid and nano-encapsulated phase change material suspension with different layout of cooling channels, Journal of Energy Storage, 31, 101720, 2020 · doi:10.1016/j.est.2020.101720
[12] Wang, T. H.; Yang, T. F.; Kao, C. H.; Yan, W. M.; Ghalambaz, M., Paraffin core-polymer shell micro-encapsulated phase change materials and expanded graphite particles as an enhanced energy storage medium in heat exchangers, Advanced Powder Technology, 31, 6, 2421-2429, 2020 · doi:10.1016/j.apt.2020.04.006
[13] Aly, A. M.; Raizah, Z.; Al-Hanaya, A., Double rotations between an inner wavy shape and a hexagonal-shaped cavity suspended by NEPCM using a time-fractional derivative of the ISPH method, International Communications in Heat and Mass Transfer, 127, 105533, 2021 · doi:10.1016/j.icheatmasstransfer.2021.105533
[14] Shah, Z.; Hajizadeh, M. R.; Ikramullah, Ç.; Alreshidi, N. A.; Deebani, W.; Shutaywi, M., Entropy optimization and heat transfer modeling for Lorentz forces effect on solidification of NEPCM, International Communications in Heat and Mass Transfer, 117, 104715, 2020 · doi:10.1016/j.icheatmasstransfer.2020.104715
[15] Laouer, A.; Arici, M.; Teggar, M.; Bouabdallah, S.; Yildiz; Ismail, K. A R.; Ajarostaghi, S. S M.; Mezaache, E. H., Effect of magnetic field and nanoparticle concentration on melting of Cu-ice in a rectangular cavity under fluctuating temperatures, Journal of Energy Storage, 36, 102421, 2021 · doi:10.1016/j.est.2021.102421
[16] Abu-Hamdeh, N. H.; Abusorrah, A. M.; Bayoumi, M. M.; Oztop, H. F.; Sun, C., Numerical study on heat loss from the surface of solar collector tube filled by oil-NE-PCM/Al_2O_3 in the presence of the magnetic field, Journal of Thermal Analysis and Calorimetry, 144, 2627-2639, 2021 · doi:10.1007/s10973-020-10480-w
[17] Khodadadi, M.; Ali Farshad, S.; Ebrahimpour, Z.; Sheikholeslami, M., Thermal performance of nanofluid with employing of NEPCM in a PVT-LFR system, Sustainable Energy Technologies and Assessments, 47, 101340, 2021 · doi:10.1016/j.seta.2021.101340
[18] Ahmed, S. E.; Raizah, Z. A S., Analysis of the entropy due to radiative flow of nano-encapsulated phase change materials within inclined porous prismatic enclosures: finite element simulation, Journal of Energy Storage, 40, 102719, 2021 · doi:10.1016/j.est.2021.102719
[19] Khodadadi, M.; Sheikholeslami, M., Heat transfer efficiency and electrical performance evaluation of photovoltaic unit under influence of NEPCM, International Journal of Heat and Mass Transfer, 183, 122232, 2022 · doi:10.1016/j.ijheatmasstransfer.2021.122232
[20] Dhaidan, N. S.; Kokz, S. A.; Rashid, F. L.; Hussein, A. K.; Younis, O.; Al-Mousawi, F. N., Review of solidification of phase change materials dispersed with nanoparticles in different containers, Journal of Energy Storage, 51, 104271, 2022 · doi:10.1016/j.est.2022.104271
[21] Abderrahmane, A.; Younis, O.; Al-Khaleel, M.; Laidoudi, H.; Akkurt, N.; Guedri, K.; Marzouki, R., 2D MHD mixed convection in a zigzag trapezoidal thermal energy storage system using NEPCM, Nanomaterials, 12, 19, 3270, 2022 · doi:10.3390/nano12193270
[22] Alhejaili, W.; Aly, A. M., Thermal radiation impacts on natural convection of NEPCM in a porous annulus between two horizontal wavy cavities, Case Studies in Thermal Engineering, 40, 102526, 2022 · doi:10.1016/j.csite.2022.102526
[23] Aly, A. M.; Raizah, Z.; El-Sapa, S.; Oztop, H. F.; Abu-Hamdeh, N., Thermal diffusion upon magnetic field convection of nano-enhanced phase change materials in a permeable wavy cavity with crescent-shaped partitions, Case Studies in Thermal Engineering, 31, 101855, 2022 · doi:10.1016/j.csite.2022.101855
[24] Aly, A. M.; Alhejaili, W., Effects of thermal radiation on natural convection in two connected circular cylinders suspended by NEPCM and porous media, Numerical Heat Transfer, Part A: Applications, 82, 8, 469-481, 2022 · doi:10.1080/10407782.2022.2079331
[25] Sharma, H. K.; Kumar, S.; Kumar, S.; Verma, S. K., Performance investigation of flat plate solar collector with nanoparticle enhanced integrated thermal energy storage system, Journal of Energy Storage, 55, 105681, 2022 · doi:10.1016/j.est.2022.105681
[26] Ghalambaz, M.; Chamkha, A. J.; Wen, D., Natural convective flow and heat transfer of nano-encapsulated phase change materials (NEPCMs) in a cavity, International Journal of Heat and Mass Transfer, 138, 738-749, 2019 · doi:10.1016/j.ijheatmasstransfer.2019.04.037
[27] Zhuang, Y.; Li, H.; Xu, W.; Huang, S. M., Experimental study on the melting performance of magnetic NEPCMs embedded in metal foam subjected to a non-uniform magnetic field, Solar Energy Materials and Solar Cells, 250, 112077, 2023 · doi:10.1016/j.solmat.2022.112077
[28] Ayoubi Ayoubloo, K.; Bazgirkhoob, H.; Asareh, M.; Noghrehabadi, A.; Moosavi, R., Magnetic force impact on melting behavior of dilatant non-Newtonian phase change materials using a numerical approach, Alexandria Engineering Journal, 66, 505-522, 2023 · doi:10.1016/j.aej.2022.11.014
[29] Ghalambaz, M.; Mehryan, S. A M.; Mozaffari, M.; Hajjar, A.; El Kadri, M.; Rachedi, N.; Sheremet, M.; Younis, O.; Nadeem, S., Entropy generation and natural convection flow of a suspension containing nano-encapsulated phase change particles in a semiannular cavity, Journal of Energy Storage, 32, 101834, 2020 · doi:10.1016/j.est.2020.101834
[30] Shafee, A.; Jafaryar, M.; Alghamdi, M.; Tlili, I., Entropy generation for spiral heat exchanger with considering NEPCM charging process using hybrid nanomaterial, The European Physical Journal Plus, 135, 3, 285, 2020 · doi:10.1140/epjp/s13360-020-00284-0
[31] Hashemi-Tilehnoee, M.; Dogonchi, A. S.; Seyyedi, S. M.; Sharifpur, M., Magneto-fluid dynamic and second law analysis in a hot porous cavity filled by nanofluid and nano-encapsulated phase change material suspension with different layout of cooling channels, Journal of Energy Storage, 31, 101720, 2020 · doi:10.1016/j.est.2020.101720
[32] Xiong, Q.; Tlili, I.; Dara, R. N.; Shafee, A.; Nguyen-Thoi, T.; Rebey, A.; Haq, R.; Li, Z., Energy storage simulation involving NEPCM solidification in appearance of fins, Physica A: Statistical Mechanics and Its Applications, 544, 123566, 2020 · Zbl 07527224 · doi:10.1016/j.physa.2019.123566
[33] Hashem Zadeh, S. M.; Mehryan, S. A M.; Islam, M. S.; Ghalambaz, M., Irreversibility analysis of thermally driven flow of a water-based suspension with dispersed nano-sized capsules of phase change material, International Journal of Heat and Mass Transfer, 155, 119796, 2020 · doi:10.1016/j.ijheatmasstransfer.2020.119796
[34] Afshar, S. R.; Mishra, S. R.; Dogonchi, A. S.; Karimi, N.; Chamkha, A. J.; Abulkhair, H., Dissection of entropy production for the free convection of NEPCMs-filled porous wavy enclosure subject to volumetric heat source/sink, Journal of the Taiwan Institute of Chemical Engineers, 128, 98-113, 2021 · doi:10.1016/j.jtice.2021.09.006
[35] Nayak, M. K.; Dogonchi, A. S.; Elmasry, Y.; Karimi, N.; Chamkha, A. J.; Alhumade, H., Free convection and second law scrutiny of NEPCM suspension inside a wavy-baffle-equipped cylinder under altered Fourier theory, Journal of the Taiwan Institute of Chemical Engineers, 128, 288-300, 2021 · doi:10.1016/j.jtice.2021.06.021
[36] Seyyedi, S. M.; Hashemi-Tilehnoee, M.; Sharifpur, M., Effect of inclined magnetic field on the entropy generation in an annulus filled with NEPCM suspension, Mathematical Problems in Engineering, 2021, 8103300, 2021 · doi:10.1155/2021/8103300
[37] Doshi, S.; Kashyap, G.; Tiwari, N., Thermo-hydraulic and entropy generation investigation of nano-encapsulated phase change material (NEPCM) slurry in hybrid wavy microchannel, International Journal of Numerical Methods for Heat and Fluid Flow, 32, 10, 3161-3190, 2022 · doi:10.1108/HFF-06-2021-0422
[38] Sadeghi, M. S.; Chamkha, A. J.; Ali, R.; Ben Hamida, M. B.; Ghodrat, M.; Galal, A. M., Hydrothermal behavior of micro-polar nano-encapsulated phase change materials (NEPCMs) in an inclined L-shaped cavity, Case Studies in Thermal Engineering, 35, 102039, 2022 · doi:10.1016/j.csite.2022.102039
[39] Rothan, Y. A., Unsteady heat transfer of NEPCM during freezing in a channel, The European Physical Journal Plus, 136, 6, 660, 2021 · doi:10.1140/epjp/s13360-021-01658-8
[40] Mansour, M. A.; Siddiqa, S.; Gorla, R. S R.; Rashad, A. M., Effects of heat source and sink on entropy generation and MHD natural convection of Al_2O_3-Cu/water hybrid nanofluid filled with square porous cavity, Thermal Science and Engineering Progress, 6, 57-71, 2018 · doi:10.1016/j.tsep.2017.10.014
[41] Armaghani, T.; Rashad, A. M.; Vahidifar, O.; Mishra, S. R.; Chamkha, A. J., Effects of discrete heat source location on heat transfer and entropy generation of nanofluid in an open inclined L-shaped cavity, International Journal of Numerical Methods for Heat and Fluid Flow, 29, 4, 1363-1377, 2019 · doi:10.1108/HFF-07-2018-0412
[42] Abdel-Nour, Z.; Aissa, A.; Mebarek-Oudina, F.; Rashad, A. M.; Ali, H. M.; Sah-Noun, M.; El Ganaoui, M., Magnetohydrodynamic natural convection of hybrid nanofluid in a porous enclosure: numerical analysis of the entropy generation, Journal of Thermal Analysis and Calorimetry, 141, 5, 1981-1992, 2020 · doi:10.1007/s10973-020-09690-z
[43] Reddy, P. B A.; Salah, T.; Jakeer, S.; Mansour, M. A.; Rashad, A. M., Entropy generation due to magneto-natural convection in a square enclosure with heated corners saturated porous medium using Cu/water nanofluid, Chinese Journal of Physics, 77, 1863-1884, 2022 · Zbl 07851750 · doi:10.1016/j.cjph.2022.01.012
[44] Kahveci, K., Buoyancy driven heat transfer of nanofluids in a tilted enclosure, Journal of Heat and Mass Transfer, 132, 062501, 2010
[45] Salih, S. M.; Alsabery, A. I.; Hussein, A. K.; Ismael, M. A.; Ghalambaz, M.; Hashim, I., Melting control of phase change material of semi-cylinders inside a horizontal baffled channel: convective laminar fluid-structure interaction, Journal of Energy Storage, 58, 106312, 2023 · doi:10.1016/j.est.2022.106312
[46] Reddy, P. S.; Chamkha, A. J., Soret and Dufour effects on unsteady MHD heat and mass transfer from a permeable stretching sheet with thermophoresis and non-uniform heat generation/absorption, Journal of Applied Fluid Mechanics, 9, 7, 2443-2455, 2016 · doi:10.18869/acadpub.jafm.68.236.25171
[47] Sreedevi, P.; Sudarsana Reddy, P.; Chamkha, A. J., Heat and mass transfer analysis of nanofluid over linear and non-linear stretching surfaces with thermal radiation and chemical reaction, Powder Technology, 315, 194-204, 2017 · doi:10.1016/j.powtec.2017.03.059
[48] Sudarsana Reddy, P.; Chamkha, A. J.; Al-Mudhaf, A., Mhd heat and mass transfer flow of a nanofluid over an inclined vertical porous plate with radiation and heat generation/absorption, Advanced Powder Technology, 28, 3, 1008-1017, 2017 · doi:10.1016/j.apt.2017.01.005
[49] Sudarsana Reddy, P.; Jyothi, K.; Suryanarayana Reddy, M., Flow and heat transfer analysis of carbon nanotubes-based Maxwell nanofluid flow driven by rotating stretchable disks with thermal radiation, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40, 12, 576, 2018 · doi:10.1007/s40430-018-1494-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.