×

A numerical framework based on localizing gradient damage methodology for high cycle fatigue crack growth simulations. (English) Zbl 07912466

Summary: Standard non-local gradient damage methodology for fatigue analysis has an intrinsic drawback of unusual widening of the damage zone. This causes a rapid growth of crack in the simulations which often violate experimental evidences. In order to tackle this undesirable behaviour, the localizing gradient damage methodology has been formulated for high cycle fatigue crack growth simulations. The framework comprises of coupling damage and elasticity through continuum mechanics, a fatigue damage law and an interaction function which reduces the influence of damaged regions on the surrounding locality. The present scheme prevents the spurious widening of the damage-band around the critically damaged area and therefore the non-physical growth of fatigue crack in the simulations is successfully countered. The developed framework is tested on various standard specimens under mode-I and mixed-mode high cycle fatigue loads. Nonlinear finite element analysis is used for this purpose. The discretized form of solver equations for the localizing framework is mathematically derived. Numerical examples show that the simulated crack-growth curves using proposed localizing framework agree closely with the experimental data and has a higher accuracy than the standard non-local framework.

MSC:

74-XX Mechanics of deformable solids
Full Text: DOI

References:

[1] Paris, P.; Erdogan, F., A critical analysis of crack propagation laws, ASME J Basic Eng, 85, 4, 528-533, 1963 · doi:10.1115/1.3656900
[2] Forman, RG; Kearney, VE; Engle, RM, Numerical analysis of crack propagation in cyclic-loaded structures, ASME J Basic Eng, 89, 3, 459-463, 1967 · doi:10.1115/1.3609637
[3] Walker EK (1970) An effective strain concept for crack propagation and fatigue life with specific applications to biaxial stress fatigue. In: Proceeding of air force conference on fatigue and fracture of aircraft structures and materials, Report AAFFDL-TR-70-144, pp 25-233
[4] McEvily, AJ; Groeger, J., On the threshold for fatigue crack growth, Adv Res Strength Fract Mater, 1978 · doi:10.1016/B978-0-08-022140-3.50087-2
[5] Tanaka, K., Fatigue crack propagation from a crack inclined to the cyclic tensile axis, Eng Fract Mech, 6, 3, 493-507, 1974 · doi:10.1016/0013-7944(74)90007-1
[6] Hussain MA, Pu SL, Underwood J (1974) Strain energy release rate for a crack under combined mode I and mode. Fract Anal 560(1)
[7] Richard HA (1984) Some theoretical and experimental aspects of mixed mode fractures. In: Proceedings of the 6th international conference on fracture, New Delhi, India, pp 3337-3344. doi:10.1016/B978-1-4832-8440-8.50358-6
[8] Yan, X.; Du, S.; Zhang, Z., Mixed-mode fatigue crack growth prediction in biaxially stretched sheets, Eng Fract Mech, 43, 3, 471-475, 1992 · doi:10.1016/0013-7944(92)90115-U
[9] Plank, R.; Kuhn, G., Fatigue crack propagation under non-proportional mixed mode loading, Eng Fract Mech, 62, 2-3, 203-229, 1999 · doi:10.1016/S0013-7944(98)00097-6
[10] Dahlin, P.; Olsson, M., Reduction of mode I fatigue crack growth rate due to occasional mode II loading, Int J Fatigue, 26, 10, 1083-1093, 2004 · doi:10.1016/j.ijfatigue.2004.03.003
[11] Borrego, LP; Antunes, FV; Costa, JM; Ferreira, JM, Mixed-mode fatigue crack growth behaviour in aluminium alloy, Int J Fatigue, 28, 5-6, 618-626, 2006 · Zbl 1139.74314 · doi:10.1016/j.ijfatigue.2005.07.047
[12] Chen, Q.; Guo, H.; Avery, K.; Kang, H.; Su, X., Mixed-mode fatigue crack growth and life prediction of an automotive adhesive bonding system, Eng Fract Mech, 189, 439-450, 2018 · doi:10.1016/j.engfracmech.2017.11.004
[13] Demir, O.; Ayhan, AO; İriç, S., A new specimen for mixed mode-I/II fracture tests: modeling, experiments and criteria development, Eng Fract Mech, 178, 457-476, 2017 · doi:10.1016/j.engfracmech.2017.02.019
[14] Demir, O.; Ayhan, AO; Sedat, IRIC; Lekesiz, H., Evaluation of mixed mode-I/II criteria for fatigue crack propagation using experiments and modeling, Chin J Aeronaut, 31, 7, 1525-1534, 2018 · doi:10.1016/j.cja.2018.05.009
[15] Floros, D.; Ekberg, A.; Larsson, F., Evaluation of crack growth direction criteria on mixed-mode fatigue crack growth experiments, Int J Fatigue, 2019 · doi:10.1016/j.ijfatigue.2019.04.013
[16] Miranda ACO, Meggiolaro MA, Castro JTP, Martha LF (2007) Path and life predictions under mixed mode I-Mode II complex loading. In International symposium on solid mechanics. University of São Paulo, São Paulo, Brazil
[17] Qian, J.; Fatemi, A., Fatigue crack growth under mixed-mode I and II loading, Fatigue Fract Eng Mater Struct, 19, 10, 1277-1284, 1996 · doi:10.1111/j.1460-2695.1996.tb00950.x
[18] Richard, HA; Sander, M.; Fulland, M.; Kullmer, G., Development of fatigue crack growth in real structures, Eng Fract Mech, 75, 3-4, 331-340, 2008 · doi:10.1016/j.engfracmech.2007.01.017
[19] Richard, HA; Schramm, B.; Schirmeisen, NH, Cracks on mixed mode loading-theories, experiments, simulations, Int J Fatigue, 62, 93-103, 2014 · doi:10.1016/j.ijfatigue.2013.06.019
[20] Sajith, S.; Krishna Murthy, KSR; Robi, PS, Prediction of accurate mixed mode fatigue crack growth curves using the Paris’ law, J Inst Eng (India) Ser C, 100, 165-174, 2019 · doi:10.1007/s40032-017-0418-2
[21] Sajith, S.; Murthy, KSRK; Robi, PS, Experimental and numerical investigation of mixed mode fatigue crack growth models in aluminum 6061-T6, Int J Fatigue, 2020 · doi:10.1016/j.ijfatigue.2019.105285
[22] Sander, M.; Richard, HA, Experimental and numerical investigations on the influence of the loading direction on the fatigue crack growth, Int J Fatigue, 28, 5-6, 583-591, 2006 · Zbl 1139.74381 · doi:10.1016/j.ijfatigue.2005.05.012
[23] Shukla, SS; Murthy, KSRK, A study on the effect of different Paris constants in mixed mode (I/II) fatigue life prediction in Al 7075-T6 alloy, Int J Fatigue, 176, 2023 · doi:10.1016/j.ijfatigue.2023.107895
[24] Shukla, SS; Sajith, S.; Murthy, KSRK, A new simple specimen for mixed-mode (I/II) fracture and fatigue tests: numerical and experimental studies, Eur J Mech A Solids, 2022 · Zbl 1493.74104 · doi:10.1016/j.euromechsol.2022.104566
[25] Varfolomeev, I.; Burdack, M.; Moroz, S.; Siegele, D.; Kadau, K., Fatigue crack growth rates and paths in two planar specimens under mixed mode loading, Int J Fatigue, 58, 12-19, 2014 · doi:10.1016/j.ijfatigue.2013.04.013
[26] Ayhan, AO; Demir, O., Computational modeling of three-dimensional mixed mode-I/II/III fatigue crack growth problems and experiments, Comput Struct, 2021 · doi:10.1016/j.compstruc.2020.106399
[27] Shukla, SS; Murthy, KSRK; Sajith, S., Mixed mode (I/III) fracture studies using a new specimen setup, Int J Mech Sci, 2023 · doi:10.1016/j.ijmecsci.2022.108036
[28] Kumar, M.; Ahmad, S.; Singh, IV; Rao, AV; Kumar, J.; Kumar, V., Experimental and numerical studies to estimate fatigue crack growth behavior of Ni-based super alloy, Theoret Appl Fract Mech, 96, 604-616, 2018 · doi:10.1016/j.tafmec.2018.07.002
[29] Kumar, M.; Bhuwal, AS; Singh, IV; Mishra, BK; Ahmad, S.; Rao, AV; Kumar, V., Nonlinear fatigue crack growth simulations using J-integral decomposition and XFEM, Procedia Eng, 173, 1209-1214, 2017 · doi:10.1016/j.proeng.2016.12.126
[30] Kumar, M.; Singh, IV; Mishra, BK, Fatigue crack growth simulations of plastically graded materials using XFEM and J-integral decomposition approach, Eng Fract Mech, 216, 2019 · doi:10.1016/j.engfracmech.2019.05.002
[31] Singh, IV; Mishra, BK; Bhattacharya, S.; Patil, RU, The numerical simulation of fatigue crack growth using extended finite element method, Int J Fatigue, 36, 1, 109-119, 2012 · doi:10.1016/j.ijfatigue.2011.08.010
[32] Chaboche, JL, Continuous damage mechanics—a tool to describe phenomena before crack initiation, Nucl Eng Des, 64, 2, 233-247, 1981 · doi:10.1016/0029-5493(81)90007-8
[33] Lemaitre, J., Local approach of fracture, Eng Fract Mech, 25, 5-6, 523-537, 1986 · doi:10.1016/0013-7944(86)90021-4
[34] Pijaudier-Cabot, G.; Bažant, ZP, Nonlocal damage theory, J Eng Mech, 113, 10, 1512-1533, 1987 · doi:10.1061/(ASCE)0733-9399(1987)113:10(1512)
[35] Qian, Z.; Takezono, S.; Tao, K., A nonlocal damage mechanics approach to high temperature fatigue crack growth, Eng Fract Mech, 53, 4, 535-543, 1996 · doi:10.1016/0013-7944(95)00156-5
[36] Lemaitre, J.; Doghri, I., Damage 90: a post processor for crack initiation, Comput Methods Appl Mech Eng, 115, 3-4, 197-232, 1994 · doi:10.1016/0045-7825(94)90060-4
[37] Lemaitre, J., A course on damage mechanics, 1996, Berlin: Springer-Verlag, Berlin · Zbl 0852.73003 · doi:10.1007/978-3-642-18255-6
[38] Lemaitre, J.; Desmorat, R., Engineering damage mechanics: ductile, creep, fatigue and brittle failures, 2005, Berlin: Springer, Berlin
[39] Chaboche, JL, A review of some plasticity and viscoplasticity constitutive theories, Int J Plast, 24, 10, 1642-1693, 2008 · Zbl 1142.74012 · doi:10.1016/j.ijplas.2008.03.009
[40] Wahab, MA; Ashcroft, IA; Crocombe, AD; Shaw, SJ, Prediction of fatigue thresholds in adhesively bonded joints using damage mechanics and fracture mechanics, J Adhes Sci Technol, 15, 7, 763-781, 2001 · doi:10.1163/15685610152540830
[41] Shenoy, V.; Ashcroft, IA; Critchlow, GW; Crocombe, AD, Fracture mechanics and damage mechanics based fatigue lifetime prediction of adhesively bonded joints subjected to variable amplitude fatigue, Eng Fract Mech, 77, 7, 1073-1090, 2010 · doi:10.1016/j.engfracmech.2010.03.008
[42] Ashcroft, IA; Shenoy, V.; Critchlow, GW; Crocombe, AD, A comparison of the prediction of fatigue damage and crack growth in adhesively bonded joints using fracture mechanics and damage mechanics progressive damage methods, J Adhes, 86, 12, 1203-1230, 2010 · doi:10.1080/00218464.2010.529383
[43] Van Do, VN; Lee, CH; Chang, KH, High cycle fatigue analysis in presence of residual stresses by using a continuum damage mechanics model, Int J Fatigue, 70, 51-62, 2015 · doi:10.1016/j.ijfatigue.2014.08.013
[44] Lee, CH; Chang, KH; Van Do, VN, Modeling the high cycle fatigue behavior of T-joint fillet welds considering weld-induced residual stresses based on continuum damage mechanics, Eng Struct, 125, 205-216, 2016 · doi:10.1016/j.engstruct.2016.07.002
[45] Jiang, W.; Xie, X.; Wang, T.; Zhang, X.; Tu, ST; Wang, J.; Zhao, X., Fatigue life prediction of 316L stainless steel weld joint including the role of residual stress and its evolution: Experimental and modelling, Int J Fatigue, 2021 · doi:10.1016/j.ijfatigue.2020.105997
[46] Wang, X.; Bian, Z.; Zhang, Z.; Hu, W.; Meng, Q., Fatigue life prediction for Al-Zn-Mg alloy butt welded joints based on a fatigue damage model accounting for the influence of interior porosity, Fatigue Fract Eng Mater Struct, 2022 · doi:10.1111/ffe.13932
[47] Yuan, D.; Cui, C.; Zhang, Q.; Li, Z.; Ye, Z., Fatigue damage evaluation of welded joints in steel bridge based on meso-damage mechanics, Int J Fatigue, 2022 · doi:10.1016/j.ijfatigue.2022.106898
[48] Pandey, VB; Samant, SS; Singh, IV; Mishra, BK, An improved methodology based on continuum damage mechanics and stress triaxiality to capture the constraint effect during fatigue crack propagation, Int J Fatigue, 2020 · doi:10.1016/j.ijfatigue.2020.105823
[49] Pandey, VB; Singh, IV; Mishra, BK; Ahmad, S.; Rao, AV; Kumar, V., A new framework based on continuum damage mechanics and XFEM for high cycle fatigue crack growth simulations, Eng Fract Mech, 206, 172-200, 2019 · doi:10.1016/j.engfracmech.2018.11.021
[50] Sharma, D.; Pandey, VB; Singh, IV; Natarajan, S.; Kumar, J.; Ahmad, S., A polygonal FEM and continuum damage mechanics based framework for stochastic simulation of fatigue life scatter in duplex microstructure titanium alloys, Mech Mater, 2021 · doi:10.1016/j.mechmat.2021.104071
[51] Sharma, D.; Singh, IV; Kumar, J., A microstructure based elasto-plastic polygonal FEM and CDM approach to evaluate LCF life in titanium alloys, Int J Mech Sci, 2022 · doi:10.1016/j.ijmecsci.2022.107356
[52] Sharma, D.; Singh, IV; Kumar, J., A computational framework based on 3D microstructure modelling to predict the mechanical behaviour of polycrystalline materials, Int J Mech Sci, 2023 · doi:10.1016/j.ijmecsci.2023.108565
[53] Peerlings, RH; de Borst, R.; Brekelmans, WM; de Vree, J., Gradient enhanced damage for quasi-brittle materials, Int J Numer Meth Eng, 39, 19, 3391-3403, 1996 · Zbl 0882.73057 · doi:10.1002/(SICI)1097-0207(19961015)39:19<3391::AID-NME7>3.0.CO;2-D
[54] Aifantis, EC, On the microstructural origin of certain inelastic models, ASME J Eng Mater Technol, 106, 326-330, 1984 · doi:10.1115/1.3225725
[55] Lasry, D.; Belytschko, T., Localization limiters in transient problems, Int J Solids Struct, 24, 6, 581-597, 1988 · Zbl 0636.73021 · doi:10.1016/0020-7683(88)90059-5
[56] de Borst, R.; Mühlhaus, HB, Gradient-dependent plasticity: formulation and algorithmic aspects, Int J Numer Meth Eng, 35, 3, 521-539, 1992 · Zbl 0768.73019 · doi:10.1002/nme.1620350307
[57] Peerlings, RH; de Borst, R.; Brekelmans, WAM; Geers, MG, Gradient-enhanced damage modelling of concrete fracture, Mech Cohes Frict Mater, 3, 4, 323-342, 1998 · doi:10.1002/(SICI)1099-1484(1998100)3:4<323::AID-CFM51>3.0.CO;2-Z
[58] Geers, MGD; De Borst, R.; Brekelmans, WAM; Peerlings, R., Strain-based transient-gradient damage model for failure analyses, Comput Methods Appl Mech Eng, 160, 1-2, 133-153, 1998 · Zbl 0938.74006 · doi:10.1016/S0045-7825(98)80011-X
[59] Geers, MGD; De Borst, R.; Brekelmans, WAM; Peerlings, RHJ, Validation and internal length scale determination for a gradient damage model: application to short glass-fibre-reinforced polypropylene, Int J Solids Struct, 36, 17, 2557-2583, 1999 · Zbl 0963.74502 · doi:10.1016/S0020-7683(98)00123-1
[60] Peerlings RH (1999) Enhanced damage modelling for fracture and fatigue. [Phd Thesis 1 (Research TU/e / Graduation TU/e), Mechanical Engineering]. Technische Universiteit Eindhoven. doi:10.6100/IR520108
[61] Peerlings, RH; Brekelmans, WM; de Borst, R.; Geers, MG, Gradient-enhanced damage modelling of high-cycle fatigue, Int J Numer Meth Eng, 49, 12, 1547-1569, 2000 · Zbl 0995.74056 · doi:10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D
[62] Nguyen, GD, A damage model with evolving nonlocal interactions, Int J Solids Struct, 48, 10, 1544-1559, 2011 · Zbl 1236.74244 · doi:10.1016/j.ijsolstr.2011.02.002
[63] Saroukhani, S.; Vafadari, R.; Simone, A., A simplified implementation of a gradient-enhanced damage model with transient length scale effects, Comput Mech, 51, 899-909, 2013 · Zbl 1366.74077 · doi:10.1007/s00466-012-0769-8
[64] Poh, LH; Sun, G., Localizing gradient damage model with decreasing interactions, Int J Numer Meth Eng, 110, 6, 503-522, 2017 · doi:10.1002/nme.5364
[65] Sarkar, S.; Singh, IV; Mishra, BK, A localizing gradient plasticity model for ductile fracture, Comput Methods Appl Mech Eng, 388, 2022 · Zbl 1507.74085 · doi:10.1016/j.cma.2021.114205
[66] Sarkar, S.; Singh, IV; Mishra, BK; Shedbale, AS; Poh, LH, A comparative study and ABAQUS implementation of conventional and localizing gradient enhanced damage models, Finite Elem Anal Des, 160, 1-31, 2019 · doi:10.1016/j.finel.2019.04.001
[67] Sarkar, S.; Singh, IV; Mishra, BK, A thermo-mechanical gradient enhanced damage method for fracture, Comput Mech, 66, 1399-1426, 2020 · Zbl 1465.74143 · doi:10.1007/s00466-020-01908-z
[68] Sarkar, S.; Singh, IV; Mishra, BK, A simple and efficient implementation of localizing gradient damage method in COMSOL for fracture simulation, Eng Fract Mech, 269, 2022 · doi:10.1016/j.engfracmech.2022.108552
[69] Sarkar, S.; Singh, IV; Mishra, BK, A simplified continuous-discontinuous approach to fracture based on decoupled localizing gradient damage method, Comput Methods Appl Mech Eng, 383, 2021 · Zbl 1506.74441 · doi:10.1016/j.cma.2021.113893
[70] Negi, A.; Kumar, S., Localizing gradient damage model with smoothed stress based anisotropic nonlocal interactions, Eng Fract Mech, 214, 21-39, 2019 · doi:10.1016/j.engfracmech.2019.04.011
[71] Negi, A.; Kumar, S.; Poh, LH, A localizing gradient damage enhancement with micromorphic stress-based anisotropic nonlocal interactions, Int J Numer Meth Eng, 121, 18, 4003-4027, 2020 · Zbl 07863203 · doi:10.1002/nme.6397
[72] Nguyen, TH; Bui, TQ; Hirose, S., Smoothing gradient damage model with evolving anisotropic nonlocal interactions tailored to low-order finite elements, Comput Methods Appl Mech Eng, 328, 498-541, 2018 · Zbl 1439.74337 · doi:10.1016/j.cma.2017.09.019
[73] Vandoren, B.; Simone, A., Modeling and simulation of quasi-brittle failure with continuous anisotropic stress-based gradient-enhanced damage models, Comput Methods Appl Mech Eng, 332, 644-685, 2018 · Zbl 1440.74348 · doi:10.1016/j.cma.2017.12.027
[74] Negi, A.; Singh, U.; Kumar, S., Structural size effect in concrete using a micromorphic stress-based localizing gradient damage model, Eng Fract Mech, 243, 2021 · doi:10.1016/j.engfracmech.2020.107511
[75] Negi, A.; Soni, A.; Kumar, S., An anisotropic localizing gradient damage approach for failure analysis of fiber reinforced composites, Compos Struct, 294, 2022 · doi:10.1016/j.compstruct.2022.115677
[76] Negi, A.; Singh, IV; Barsoum, I., A gradient-enhanced damage model for anisotropic brittle fracture with interfacial damage in polycrystalline materials, Eng Fract Mech, 280, 2023 · doi:10.1016/j.engfracmech.2023.109093
[77] Francfort, GA; Marigo, JJ, Revisiting brittle fracture as an energy minimization problem, J Mech Phys Solids, 46, 8, 1319-1342, 1998 · Zbl 0966.74060 · doi:10.1016/S0022-5096(98)00034-9
[78] Ambati, M.; Gerasimov, T.; De Lorenzis, L., A review on phase-field models of brittle fracture and a new fast hybrid formulation, Comput Mech, 55, 383-405, 2015 · Zbl 1398.74270 · doi:10.1007/s00466-014-1109-y
[79] Amor, H.; Marigo, JJ; Maurini, C., Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments, J Mech Phys Solids, 57, 8, 1209-1229, 2009 · Zbl 1426.74257 · doi:10.1016/j.jmps.2009.04.011
[80] Bourdin, B.; Francfort, GA; Marigo, JJ, The variational approach to fracture, J Elast, 91, 5-148, 2008 · Zbl 1176.74018 · doi:10.1007/s10659-007-9107-3
[81] Miehe, C.; Hofacker, M.; Welschinger, F., A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits, Comput Methods Appl Mech Eng, 199, 45-48, 2765-2778, 2010 · Zbl 1231.74022 · doi:10.1016/j.cma.2010.04.011
[82] Wu, JY, A unified phase-field theory for the mechanics of damage and quasi-brittle failure, J Mech Phys Solids, 103, 72-99, 2017 · doi:10.1016/j.jmps.2017.03.015
[83] de Borst, R.; Verhoosel, CV, Gradient damage vs phase-field approaches for fracture: similarities and differences, Comput Methods Appl Mech Eng, 312, 78-94, 2016 · Zbl 1439.74347 · doi:10.1016/j.cma.2016.05.015
[84] Boldrini, JL; de Moraes, EB; Chiarelli, LR; Fumes, FG; Bittencourt, M., A non-isothermal thermodynamically consistent phase field framework for structural damage and fatigue, Comput Methods Appl Mech Eng, 312, 395-427, 2016 · Zbl 1439.74023 · doi:10.1016/j.cma.2016.08.030
[85] Alessi, R.; Vidoli, S.; De Lorenzis, L., A phenomenological approach to fatigue with a variational phase-field model: the one-dimensional case, Eng Fract Mech, 190, 53-73, 2018 · doi:10.1016/j.engfracmech.2017.11.036
[86] Carrara, P.; Ambati, M.; Alessi, R.; De Lorenzis, L., A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach, Comput Methods Appl Mech Eng, 361, 2020 · Zbl 1442.74195 · doi:10.1016/j.cma.2019.112731
[87] Schreiber, C.; Kuhn, C.; Müller, R.; Zohdi, T., A phase field modeling approach of cyclic fatigue crack growth, Int J Fract, 225, 89-100, 2020 · doi:10.1007/s10704-020-00468-w
[88] Loew, PJ; Peters, B.; Beex, LA, Fatigue phase-field damage modeling of rubber using viscous dissipation: crack nucleation and propagation, Mech Mater, 142, 2020 · doi:10.1016/j.mechmat.2019.103282
[89] Hasan, MM; Baxevanis, T., A phase-field model for low-cycle fatigue of brittle materials, Int J Fatigue, 150, 2021 · doi:10.1016/j.ijfatigue.2021.106297
[90] Seleš, K.; Aldakheel, F.; Tonković, Z.; Sorić, J.; Wriggers, P., A general phase-field model for fatigue failure in brittle and ductile solids, Comput Mech, 67, 1431-1452, 2021 · Zbl 1468.74056 · doi:10.1007/s00466-021-01996-5
[91] Golahmar, A.; Niordson, CF; Martínez-Pañeda, E., A phase field model for high-cycle fatigue: total-life analysis, Int J Fatigue, 170, 2023 · doi:10.1016/j.ijfatigue.2023.107558
[92] Jaccon, A.; Prabel, B.; Molnár, G.; Bluthé, J.; Gravouil, A., Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling, Finite Elem Anal Des, 224, 2023 · doi:10.1016/j.finel.2023.104004
[93] Mandal, TK; Nguyen, VP; Heidarpour, A., Phase field and gradient enhanced damage models for quasi-brittle failure: a numerical comparative study, Eng Fract Mech, 207, 48-67, 2019 · doi:10.1016/j.engfracmech.2018.12.013
[94] Suresh, S., Fatigue of materials, 1998, Cambridge: Cambridge University Press, Cambridge · doi:10.1017/CBO9780511806575
[95] Bathe, KJ; Cimento, AP, Some practical procedures for the solution of nonlinear finite element equations, Comput Methods Appl Mech Eng, 22, 1, 59-85, 1980 · Zbl 0435.73080 · doi:10.1016/0045-7825(80)90051-1
[96] Negru, R.; Marsavina, L.; Muntean, S.; Pasca, N., Fatigue behaviour of stainless steel used for turbine runners, Adv Eng Forum, 8, 413-420, 2013 · doi:10.4028/www.scientific.net/AEF.8-9.413
[97] Stephens RI (1988) Fatigue and fracture toughness of A356-T6 cast aluminum alloy, society of automotive engineers. 400 Commonwealth Drive, Warrendale, PA, vol SP-760, p 15096
[98] Tajiri, A.; Uematsu, Y.; Kakiuchi, T.; Suzuki, Y., Fatigue crack paths and properties in A356-T6 aluminum alloy microstructurally modified by friction stir processing under different conditions, Fratt Integr Strutt, 2015 · doi:10.3221/IGF-ESIS.34.38
[99] Chopra OK (2002) Development of a fatigue design curve for austenitic stainless steels in LWR environments: a review. In: ASME Pressure vessels and piping conference, vol 46504, pp 119-132. doi:10.1115/PVP2002-1229
[100] Benachour, M.; Hadjoui, A.; Benguediab, M.; Benachour, N., Effect of the amplitude loading on fatigue crack growth, Procedia Eng, 2, 1, 121-127, 2010 · doi:10.1016/j.proeng.2010.03.013
[101] Mazlan, S.; Yidris, N.; Koloor, SSR; Petrů, M., Experimental and numerical analysis of fatigue life of aluminum Al 2024-T351 at elevated temperature, Metals, 10, 12, 1581, 2020 · doi:10.3390/met10121581
[102] Kumar, R.; Garg, SBL, Influence of applied stress ratio on fatigue crack growth in 6063-T6 aluminium alloy, Int J Press Vessels Pip, 20, 1, 65-76, 1985 · doi:10.1016/0308-0161(85)90035-3
[103] Tomaszewski, T.; Sempruch, J., Fatigue life prediction of aluminium profiles for mechanical engineering, J Theor Appl Mech, 55, 2, 497-507, 2017 · doi:10.15632/jtam-pl.55.2.497
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.