×

Tribo-dynamic modelling and analysis for a high-speed helical gear system with time-varying backlash and friction under elastohydrodynamic lubrication condition. (English) Zbl 07912439

Summary: High-speed gear reducers are highly sensitive to vibration and noise, especially in new-energy vehicles. Hence, the current nonlinear dynamics model of gears does not fully consider the influence of tooth microstructure on backlash and friction. This study establishes a nonlinear friction dynamics model for a high-speed helical gear system, which includes time-varying dynamic backlash and friction coefficient based on the fractal characterization of tooth roughness. Furthermore, it investigates the influence of tooth surface roughness on the dynamic performance by taking into account the interaction between friction and vibration under Elastohydrodynamic Lubrication (EHL). Theoretical simulation results show that an increase in tooth roughness leads to an overall deterioration in the dynamic performance of the helical gear system; however, local optimization can also be observed. In the case of a dynamic tooth backlash, the amplitude of displacement oscillations increases, and the number of frequencies increases; in terms of frictional coefficient, the amplitude of displacement oscillations increases, but the change is small compared with that of the dynamic tooth backlash, and the number of frequencies in the spectrum decreases. The results indicate that the proposed model can provide a reference for controlling the tooth roughness of high-speed gears.

MSC:

74-XX Mechanics of deformable solids
Full Text: DOI

References:

[1] Mughal, H.; Sivayogan, G.; Dolatabadi, N.; Rahmani, R., An efficient analytical approach to assess the root cause of nonlinear electric vehicle gear whine, Nonlinear Dyn, 110, 3167-3186, 2022 · doi:10.1007/s11071-022-07800-0
[2] Ho-Gil, Y.; Woo-Jin, C.; Beom-Soo, K., Effect of hybrid metal-composite gear on the reduction of dynamic transmission error, J Mech Sci Technol, 2023 · doi:10.1007/s12206-023-0610-7
[3] Sun, M.; Lu, C.; Liu, Z., Classifying, predicting, and reducing strategies of the mesh citations of gear whine noise: a survey, Shock Vib, 2020 · doi:10.1155/2020/9834939
[4] Xiang, L.; Zhang, Y.; Gao, N., Nonlinear dynamics of multistage gear transmission system with multi-clearance, Int J Bifürcation Chaos, 2018 · Zbl 1062.70577 · doi:10.1016/S0094-114X(03)00093-4
[5] Chen, J.; Li, W.; Xin, G., Nonlinear dynamic characteristics analysis and chaos control of a gear transmission system in a shearer under temperature effects, Proc Inst Mech Eng C, 233, 5691-5709, 2019 · doi:10.1177/0954406219854112
[6] Geng, Z.; Xiao, K.; Wang, J.; Li, J., Investigation on nonlinear dynamic characteristics of a new rigid-flexible gear transmission with wear, J Vib Acoust Trans ASME, 141, 2019 · doi:10.1115/1.4043543
[7] Yi, Y.; Huang, K.; Xiong, Y.; Sang, M., Nonlinear dynamic modelling and analysis for a spur gear system with time-varying pressure angle and gear backlash, Mech Syst Signal Process, 132, 18-34, 2019 · doi:10.1016/j.ymssp.2019.06.013
[8] Liu, H.; Zhang, C.; Xiang, CL; Wang, C., Tooth profile modification based on lateral-torsional-rocking coupled nonlinear dynamic model of gear system, Mech Mach Theor, 105, 606-619, 2016 · doi:10.1016/j.mechmachtheory.2016.07.013
[9] Li, ZF; Zhu, LY; Chen, SQ; Chen, Z.; Gou, X., Study on safety characteristics of the spur gear pair considering time-varying backlash in the established multi-level safety domains, Nonlinear Dyn, 109, 1297-1324, 2022 · doi:10.1007/s11071-022-07467-7
[10] Chen, J.; Zhu, R.; Chen, W., Nonlinear dynamic modeling and analysis of helical gear system with time-varying backlash caused by mixed modification, Nonlinear Dyn, 111, 1193-1212, 2023 · doi:10.1007/s11071-022-07872-y
[11] Chen, Q.; Ma, Y.; Huang, S.; Zhai, H., Research on gears’ dynamic performance influenced by gear backlash based on fractal theory, Appl Surf Sci, 313, 325-332, 2014 · doi:10.1016/j.apsusc.2014.05.210
[12] Huang, K.; Xiong, Y.; Wang, T.; Chen, Q., Research on the dynamic response of high-contact-ratio spur gears influenced by surface roughness under EHL condition, Appl Surf Sci, 392, 8-18, 2017 · doi:10.1016/j.apsusc.2016.09.009
[13] Chen, Q.; Wang, Y.; Tian, W.; Wu, Y.; Chen, Y., An improved nonlinear dynamic model of gear pair with tooth surface microscopic features, Nonlinear Dyn, 96, 1615-1634, 2019 · doi:10.1007/s11071-019-04874-1
[14] Li, Z.; Peng, Z., Nonlinear dynamic response of a multi-degree-of-freedom gear system dynamic model coupled with tooth surface characters: a case study on coal cutters, Nonlinear Dyn, 84, 271-286, 2016 · doi:10.1007/s11071-015-2475-5
[15] Hongbo Y, Wenku S, Zhiyong C, Niancheng G (2022) An improved analytical method for mesh stiffness calculation of helical gear pair considering time-varying backlash. Mech Syst Signal Process, 170. doi:10.1016/j.ymssp.2022.108882
[16] Hinrichs, N.; Oestreich, M., On the modeling of friction oscillators, J Sound Vib, 216, 435-459, 1998 · doi:10.1006/jsvi.1998.1736
[17] Siyu, C.; Jinyuan, T.; Caiwang, L.; Qibo, W., Nonlinear dynamic characteristics of geared rotor bearing systems with dynamic backlash and friction, Mech Mach Theory, 46, 466-478, 2011 · Zbl 1335.70010 · doi:10.1016/j.mechmachtheory.2010.11.016
[18] Fang, Y.; Liang, X.; Zuo, MJ, Effects of friction and stochastic load on transient characteristics of a spur gear pair, Nonlinear Dyn, 93, 599-609, 2018 · doi:10.1007/s11071-018-4212-3
[19] Wang, C., Dynamic model of a helical gear pair considering tooth surface friction, J Vib Control, 26, 107754631989612, 2020 · doi:10.1177/1077546319896124
[20] Jiang H, Liu F (2022) Dynamic characteristics of helical gears incorporating the effects of coupled sliding friction. Meccanica 57:523-539). doi:10.1007/s11012-022-01477-w · Zbl 1528.70009
[21] Chen, Q.; Zhao, YC; Ma, YB, Testing experiment of characteristic-scale coefficient about cylinder surface, J Mar Sci Technol, 36, 687-690, 2014 · doi:10.1007/s00773-019-00684-7
[22] Wang, S.; Zhu, R., An improved mesh stiffness model of helical gear pair considering axial mesh force and friction force influenced by surface roughness under EHL condition, Appl Math Modell, 102, 453-471, 2022 · Zbl 1525.74150 · doi:10.1016/j.apm.2021.10.007
[23] Xin Y, Yunyun S, Shijing W (2023) Analytical decoupling of the friction coefficient between mixed lubricated fractal surfaces. Int J Mech Sci, 255. doi:10.1016/j.ijmecsci.2023.108465
[24] Chen, ZG; Shao, YM; Lim, TC, Non-linear dynamic simulation of gear response under the idling condition, Int J Automot Technol, 13, 541-552, 2012 · doi:10.1007/s12239-012-0052-1
[25] Xu H, Kahraman A (2007) Prediction of friction-related power losses of hypoid gear pairs. J Multi-body Dyn 221(3):387-400.(2007)doi:10.1243/14644193JMBD48.
[26] Xu HE (2005) Development of a generalized mechanical efficiency prediction methodology for gear pairs. Dissertation Abstracts International, pp 104-112.
[27] Liew, HV; Lim, TC, Analysis of time-varying rolling element bearing characteristics, J Sound Vib, 283, 1163-1179, 2005 · doi:10.1016/j.jsv.2004.06.022
[28] Ouyang, BCN, Investigation of lubricating and dynamic performances for high-speed spur gear based on tribo-dynamic theory, Tribol Int, 136, 421-431, 2019 · doi:10.1016/j.triboint.2019.03.009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.