×

On the completely positive kernels for nonuniform meshes. (English) Zbl 07910868

Summary: The complete positivity for convolutional kernels is an important property for the positivity property and asymptotic behaviors of Volterra equations. We investigate the discrete analogue of the complete positivity properties, especially for convolutional kernels on nonuniform meshes. Through an operation which we call pseudo-convolution, we introduce the complete positivity property for discrete kernels on nonuniform meshes and establish the criterion for the complete positivity. We then apply our theory to the L1 discretization of time fractional differential equations on nonuniform meshes.

MSC:

45E10 Integral equations of the convolution type (Abel, Picard, Toeplitz and Wiener-Hopf type)
45D05 Volterra integral equations
45M05 Asymptotics of solutions to integral equations

References:

[1] Cai, Wei, Computational methods for electromagnetic phenomena, xviii+444 pp., 2013, Cambridge University Press, Cambridge · Zbl 1510.78001
[2] Cl\'{e}ment, Ph., Abstract linear and nonlinear Volterra equations preserving positivity, SIAM J. Math. Anal., 365-388, 1979 · Zbl 0411.45012 · doi:10.1137/0510035
[3] Cl\'{e}ment, Ph., Asymptotic behavior of solutions of nonlinear Volterra equations with completely positive kernels, SIAM J. Math. Anal., 514-535, 1981 · Zbl 0462.45025 · doi:10.1137/0512045
[4] Coleman, Bernard D., Foundations of linear viscoelasticity, Rev. Modern Phys., 239-249, 1961 · Zbl 0103.40804 · doi:10.1103/RevModPhys.33.239
[5] Cuesta, Eduardo, Convolution quadrature time discretization of fractional diffusion-wave equations, Math. Comp., 673-696, 2006 · Zbl 1090.65147 · doi:10.1090/S0025-5718-06-01788-1
[6] Diethelm, Kai, The analysis of fractional differential equations, Lecture Notes in Mathematics, viii+247 pp., 2010, Springer-Verlag, Berlin · Zbl 1215.34001 · doi:10.1007/978-3-642-14574-2
[7] Gripenberg, G., Volterra integral and functional equations, Encyclopedia of Mathematics and its Applications, xxii+701 pp., 1990, Cambridge University Press, Cambridge · Zbl 0695.45002 · doi:10.1017/CBO9780511662805
[8] Kopteva, Natalia, Error analysis of the L1 method on graded and uniform meshes for a fractional-derivative problem in two and three dimensions, Math. Comp., 2135-2155, 2019 · Zbl 1417.65152 · doi:10.1090/mcom/3410
[9] S. C. Kou and X. Sunney Xie, Generalized Langevin equation with fractional Gaussian noise: subdiffusion within a single protein molecule, Phys. Rev. Lett. 93 (2004), no. 18, 180603.
[10] Li, Dongfang, Linearized Galerkin FEMs for nonlinear time fractional parabolic problems with non-smooth solutions in time direction, J. Sci. Comput., 403-419, 2019 · Zbl 1418.65179 · doi:10.1007/s10915-019-00943-0
[11] Li, Lei, A generalized definition of Caputo derivatives and its application to fractional ODEs, SIAM J. Math. Anal., 2867-2900, 2018 · Zbl 1401.26013 · doi:10.1137/17M1160318
[12] Li, Lei, A note on deconvolution with completely monotone sequences and discrete fractional calculus, Quart. Appl. Math., 189-198, 2018 · Zbl 1476.47029 · doi:10.1090/qam/1479
[13] Li, Lei, Some compactness criteria for weak solutions of time fractional PDEs, SIAM J. Math. Anal., 3963-3995, 2018 · Zbl 1403.35318 · doi:10.1137/17M1145549
[14] Li, Lei, Fractional stochastic differential equations satisfying fluctuation-dissipation theorem, J. Stat. Phys., 316-339, 2017 · Zbl 1386.82053 · doi:10.1007/s10955-017-1866-z
[15] Li, Lei, Complete monotonicity-preserving numerical methods for time fractional ODEs, Commun. Math. Sci., 1301-1336, 2021 · Zbl 1477.65109 · doi:10.4310/CMS.2021.v19.n5.a6
[16] Liao, Hong-lin, Sharp error estimate of the nonuniform L1 formula for linear reaction-subdiffusion equations, SIAM J. Numer. Anal., 1112-1133, 2018 · Zbl 1447.65026 · doi:10.1137/17M1131829
[17] Liao, Hong-lin, A discrete Gr\"{o}nwall inequality with applications to numerical schemes for subdiffusion problems, SIAM J. Numer. Anal., 218-237, 2019 · Zbl 1414.65008 · doi:10.1137/16M1175742
[18] Liao, Hong-lin, Discrete gradient structure of a second-order variable-step method for nonlinear integro-differential models, SIAM J. Numer. Anal., 2157-2181, 2023 · Zbl 1527.35452 · doi:10.1137/22M1520050
[19] H.-l. Liao, T. Tang, and T. Zhou, Positive definiteness of real quadratic forms resulting from the variable-step approximation of convolution operators, arXiv preprint arXiv:2011.13383 (2020).
[20] Liao, Hong-lin, Analysis of adaptive BDF2 scheme for diffusion equations, Math. Comp., 1207-1226, 2021 · Zbl 1466.65067 · doi:10.1090/mcom/3585
[21] Lin, Yumin, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 1533-1552, 2007 · Zbl 1126.65121 · doi:10.1016/j.jcp.2007.02.001
[22] Loy, R. J., Interconversion relationships for completely monotone functions, SIAM J. Math. Anal., 2008-2032, 2014 · Zbl 1299.74034 · doi:10.1137/120891988
[23] Lyu, Pin, A symmetric fractional-order reduction method for direct nonuniform approximations of semilinear diffusion-wave equations, J. Sci. Comput., Paper No. 34, 25 pp., 2022 · Zbl 1497.65130 · doi:10.1007/s10915-022-02000-9
[24] McLean, W., Discretization with variable time steps of an evolution equation with a positive-type memory term, J. Comput. Appl. Math., 49-69, 1996 · Zbl 0858.65143 · doi:10.1016/0377-0427(95)00025-9
[25] Miller, Richard K., Smoothness of solutions of Volterra integral equations with weakly singular kernels, SIAM J. Math. Anal., 242-258, 1971 · Zbl 0217.15602 · doi:10.1137/0502022
[26] Miller, R. K., On Volterra integral equations with nonnegative integrable resolvents, J. Math. Anal. Appl., 319-340, 1968 · Zbl 0167.40901 · doi:10.1016/0022-247X(68)90176-5
[27] Del Piero, Gianpietro, On the concepts of state and free energy in linear viscoelasticity, Arch. Rational Mech. Anal., 1-35, 1997 · Zbl 0891.73024 · doi:10.1007/s002050050035
[28] Plemmons, R. J., \(M\)-matrix characterizations. I. Nonsingular \(M\)-matrices, Linear Algebra Appl., 175-188, 1977 · Zbl 0359.15005 · doi:10.1016/0024-3795(77)90073-8
[29] Schilling, Ren\'{e} L., Bernstein functions, De Gruyter Studies in Mathematics, xiv+410 pp., 2012, Walter de Gruyter & Co., Berlin · Zbl 1257.33001 · doi:10.1515/9783110269338
[30] O. Stenzel, The physics of thin film optical spectra, Springer, 2005.
[31] Stynes, Martin, Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation, SIAM J. Numer. Anal., 1057-1079, 2017 · Zbl 1362.65089 · doi:10.1137/16M1082329
[32] Tang, Tao, On energy dissipation theory and numerical stability for time-fractional phase-field equations, SIAM J. Sci. Comput., A3757-A3778, 2019 · Zbl 1435.65146 · doi:10.1137/18M1203560
[33] Weis, Dennis G., Asymptotic behavior of some nonlinear Volterra integral equations, J. Math. Anal. Appl., 59-87, 1975 · Zbl 0331.45002 · doi:10.1016/0022-247X(75)90162-6
[34] Widder, David Vernon, The Laplace transform, Princeton Mathematical Series, vol. 6, x+406 pp., 1941, Princeton University Press, Princeton, NJ · Zbl 0063.08245
[35] Q. Zhan, M. Zhuang, Z. Zhou, J.-G. Liu, and Q. H. Liu, Complete-Q model for poro-viscoelastic media in subsurface sensing: Large-scale simulation with an adaptive DG algorithm, IEEE Trans. Geosci. Remote Sensing 57 (2019), no. 7, 4591-4599.
[36] R. Zwanzig, Nonlinear generalized Langevin equations, J. Stat. Phys.9 (1973), no. 3, 215-220.
[37] Zwanzig, Robert, Nonequilibrium statistical mechanics, viii+222 pp., 2001, Oxford University Press, New York · Zbl 1267.82001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.