×

The Stokes operator on manifolds with cylindrical ends. (English) Zbl 07910517

Summary: We prove the invertibility of the modified Stokes-type operator \(\Xi +W\) on a manifold with straight cylindrical ends, where \[ \Xi := \begin{pmatrix} 2\operatorname{Def}^{\ast} \operatorname{Def} & d \\ d^{\ast} & 0 \end{pmatrix} \text{ and } W := \begin{pmatrix} V & 0 \\ 0 & - V_0 \end{pmatrix} \] are the usual Stokes operator and a suitable vector potential, respectively. The proof is based on the ‘Mitrea-Taylor trick.’ To be able to use this method, we rely on some auxiliary Fredholm, regularity, and invertibility results, some established in this paper and some in a recent preprint [M. Kohr et al., “Layer potentials and essentially translation invariant pseudodifferential operators on manifolds with cylindrical ends”, Preprint, arXiv:2308.06308]. The auxiliary results are proved using a suitable pseudodifferential calculus on our manifold with cylindrical ends. As a consequence, we also obtain the structure of the inverse of our modified Stokes operator. Our main motivation for these results is the study of layer potential operators for the Stokes system on domains with cylindrical ends (or outlets). For this reason, we formulate many of our results in the framework of Douglis-Nirenberg-elliptic operators.

MSC:

35R01 PDEs on manifolds
35Q35 PDEs in connection with fluid mechanics
76M99 Basic methods in fluid mechanics
Full Text: DOI

References:

[1] Amann, H., Function spaces on singular manifolds, Math. Nachr., 286, 5-6, 436-475, 2013 · Zbl 1280.46022
[2] Ammann, B.; Große, N.; Nistor, V., Well-posedness of the Laplacian on manifolds with boundary and bounded geometry, Math. Nachr., 292, 6, 1213-1237, 2019 · Zbl 1419.58017
[3] Brezis, H., Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, 2011, Springer: Springer New York · Zbl 1220.46002
[4] Carvalho, C.; Nistor, V.; Yu, Q., Fredholm criteria for pseudodifferential operators and induced representations of groupoid algebras, Electron. Res. Announc. Math. Sci., 24, 68-77, 2017 · Zbl 1405.58009
[5] Costabel, M., Boundary integral operators on Lipschitz domains: elementary results, SIAM J. Math. Anal., 19, 613-626, 1988 · Zbl 0644.35037
[6] Dalla Riva, M.; Lanza de Cristoforis, M.; Musolino, P., Singularly Perturbed Boundary Value Problems. A Functional Analytic Approach, 2021, Springer: Springer Cham · Zbl 1481.35005
[7] Dauge, M., Elliptic boundary value problems on corner domains, (Smoothness and Asymptotics of Solutions. Smoothness and Asymptotics of Solutions, Lecture Notes in Mathematics, vol. 1341, 1988, Springer-Verlag: Springer-Verlag Berlin) · Zbl 0668.35001
[8] Fritzsch, K.; Grieser, D.; Schrohe, E., The Calderón projector for fibred cusp operators, 2020 · Zbl 07740628
[9] N. Große, M. Kohr, V. Nistor, The \(L^2\)-unique continuation property on manifolds with bounded geometry and the deformation operator, Arxiv preprint, 2023.
[10] Große, N.; Schneider, C., Sobolev spaces on Riemannian manifolds with bounded geometry: general coordinates and traces, Math. Nachr., 286, 16, 1586-1613, 2013 · Zbl 1294.46031
[11] Hebey, E., Sobolev Spaces on Riemannian Manifolds, Lecture Notes in Mathematics, vol. 1635, 1996, Springer-Verlag: Springer-Verlag Berlin · Zbl 0866.58068
[12] Hörmander, L., The analysis of linear partial differential operators. III, (Pseudo-Differential Operators. Pseudo-Differential Operators, Classics in Mathematics, 2007, Springer: Springer Berlin) · Zbl 1115.35005
[13] Hsiao, G. C.; Wendland, W. L., Boundary Integral Equations, 2021, Springer Nature: Springer Nature Switzerland · Zbl 1477.65007
[14] Kohr, M.; Labrunie, S.; Mohsen, H.; Nistor, V., Polynomial estimates for solutions of parametric elliptic equations on complete manifolds, Stud. Univ. Babeş-Bolyai, Math., 2, 369-382, 2022 · Zbl 07858073
[15] Kohr, M.; Lanza de Cristoforis, M.; Mikhailov, S.; Wendland, W. L., Integral potential method for transmission problem with Lipschitz interface in \(\mathbb{R}^3\) for the Stokes and Darcy-Forchheimer-Brinkman PDE systems, Z. Angew. Math. Phys., 67:116, 5, 1-30, 2016 · Zbl 1368.35096
[16] Kohr, M.; Nistor, V., Sobolev spaces and ∇-differential operators on manifolds I: basic properties and weighted spaces, Ann. Glob. Anal. Geom., 61, 721-758, 2022 · Zbl 1491.35418
[17] Kohr, M.; Nistor, V.; Wendland, W., Layer potentials and essentially translation invariant pseudodifferential operators on manifolds with cylindrical ends, (Postpandemic Operator Theory, 61-115, Proceedings of the 28th Conference on Operator Theory, Timişoara, 2022), in press
[18] M. Kohr, V. Nistor, W. Wendland, Layer potentials for a modified Stokes operator on manifolds with cylindrical ends, preprint, 2023.
[19] Kohr, M.; Wendland, W. L., Variational approach for the Stokes and Navier-Stokes systems with nonsmooth coefficients in Lipschitz domains on compact Riemannian manifolds, Calc. Var. Partial Differ. Equ., 3-4, 57-165, 2018 · Zbl 1404.35150
[20] Kondrat’ev, V. A., Boundary value problems for elliptic equations in domains with conical or angular points, Trans. Mosc. Math. Soc., 16, 227-313, 1967 · Zbl 0194.13405
[21] Král, J.; Wendland, W., Some examples concerning applicability of the Fredholm-Radon method in potential theory, Apl. Mat., 31, 293-308, 1986 · Zbl 0615.31005
[22] Lauter, R.; Seiler, J., Pseudodifferential analysis on manifolds with boundary - a comparison of b-calculus and cone algebra, (Oper. Theory Adv. Appl.. Oper. Theory Adv. Appl., Adv. Partial Differ. Equ., vol. 125, 2001), 131-166 · Zbl 0998.58018
[23] Lewis, J.; Parenti, C., Pseudodifferential operators of Mellin type, Commun. Partial Differ. Equ., 8, 477-544, 1983 · Zbl 0532.35085
[24] Lions, J.-L.; Magenes, E., Non-homogeneous Boundary Value Problems and Applications. Vol. I, Die Grundlehren der mathematischen Wissenschaften, vol. 181, 1972, Springer-Verlag: Springer-Verlag New York-Heidelberg, Translated from the French by P. Kenneth · Zbl 0223.35039
[25] Maz’ya, V.; Rossmann, J., Mixed boundary value problems for the stationary Navier-Stokes system in polyhedral domains, Arch. Ration. Mech. Anal., 194, 669-712, 2009 · Zbl 1253.76019
[26] Mazzeo, R., Elliptic theory of differential edge operators. I, Commun. Partial Differ. Equ., 16, 10, 1615-1664, 1991 · Zbl 0745.58045
[27] Mazzeo, R.; Melrose, R., Pseudodifferential operators on manifolds with fibred boundaries, Asian J. Math., 2, 833-866, 1998 · Zbl 1125.58304
[28] Mazzucato, A.; Taylor, M., Vanishing viscosity plane parallel channel flow and related singular perturbation problems, Anal. PDE, 1, 1, 35-93, 2008 · Zbl 1160.35329
[29] Melrose, R., Transformation of boundary problems, Acta Math., 147, 149-236, 1981 · Zbl 0492.58023
[30] Melrose, R.; Mendoza, G., Elliptic operators of totally characteristic type, Math. Sci. Res. Inst., 47-83, 1983, Preprint
[31] Mitrea, D.; Mitrea, I.; Mitrea, M.; Taylor, M., The Hodge-Laplacian, (Boundary Value Problems on Riemannian Manifolds. Boundary Value Problems on Riemannian Manifolds, De Gruyter Studies in Mathematics, vol. 64, 2016, De Gruyter: De Gruyter Berlin) · Zbl 1357.58001
[32] Mitrea, M.; Nistor, V., Boundary value problems and layer potentials on manifolds with cylindrical ends, Czechoslov. Math. J., 57(132), 4, 1151-1197, 2007 · Zbl 1174.31002
[33] Mitrea, M.; Taylor, M., Boundary layer methods for Lipschitz domains in Riemannian manifolds, J. Funct. Anal., 163, 181-251, 1999 · Zbl 0930.58014
[34] Mitrea, M.; Taylor, M., Navier-Stokes equations on Lipschitz domains in Riemannian manifolds, Math. Ann., 321, 955-987, 2001 · Zbl 1039.35079
[35] Qiao, Y.; Nistor, V., Single and double layer potentials on domains with conical points I: Straight cones, Integral Equ. Oper. Theory, 72, 419-448, 2012 · Zbl 1267.47077
[36] Ruzhansky, M.; Turunen, V., Pseudo-Differential Operators and Symmetries: Background Analysis and Advanced Topics, 2010 · Zbl 1193.35261
[37] Schulze, B.-W., Pseudo-Differential Operators on Manifolds with Singularities, Studies in Mathematics and Its Applications, vol. 24, 1991, North-Holland Publishing Co. · Zbl 0747.58003
[38] Schulze, B.-W., Boundary Value Problems and Singular Pseudo-Differential Operators, Wiley-Interscience Series in Pure and Applied Mathematics, 1998, John Wiley & Sons: John Wiley & Sons Chichester · Zbl 0907.35146
[39] Taylor, M., Partial Differential Equations I. Basic Theory, Applied Mathematical Sciences., vol. 115, 2011, Springer: Springer New York · Zbl 1206.35002
[40] Taylor, M., Partial Differential Equations II. Qualitative Studies of Linear Equations, Applied Mathematical Sciences., vol. 116, 2011, Springer: Springer New York · Zbl 1206.35003
[41] Taylor, M. E., Pseudodifferential Operators, 1981, Princeton University Press: Princeton University Press Princeton · Zbl 0453.47026
[42] Trèves, F., Introduction to Pseudodifferential and Fourier Integral Operators. Vol. 1: Pseudodifferential Operators. Vol. 2: Fourier Integral Operators, The University Series in Mathematics, 1980, Plenum Press: Plenum Press New York, London, XXXIX, XXV, 649 p. \( 35.94, 42.00 1980\) · Zbl 0453.47027
[43] Wloka, J.; Rowley, B.; Lawruk, B., Boundary Value Problems for Elliptic Systems, 1995, Cambridge University Press · Zbl 0836.35042
[44] Wong, M., An Introduction to Pseudo-Differential Operators, 1991, World Scientific: World Scientific Singapore · Zbl 0753.35134
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.