×

The geometry of quantum computing. (English) Zbl 07910062

Summary: In this expository paper, we present a brief introduction to the geometrical modeling of some quantum computing problems. After a brief introduction to establish the terminology, we focus on quantum information geometry and \(ZX\)-calculus, establishing a connection between quantum computing questions and quantum groups, i.e. Hopf algebras.

MSC:

83-XX Relativity and gravitational theory
53-XX Differential geometry

References:

[1] Feynman, R. P., Simulating physics with computers, Int. J. Theor. Phys.21 (1982) 467-488.
[2] Feynman, R. P., Quantum mechanical computers, Found. Phys.16(6) (1986) 507-531.
[3] Manin, Y., Computable and Uncomputable (Sovetskoye Radio, Moscow, 1980). · Zbl 0471.03003
[4] Manin, Y., Topics in Noncommutative Geometry, , (Princeton University Press, Princeton, NJ, 1991). · Zbl 0724.17007
[5] Deutsch, D., Quantum theory, the Church-Turing principle and the universal quantum computer, Proc. R. Soc. Lond. A Math. Phys. Sci.400(1818) (1985) 97-117. · Zbl 0900.81019
[6] Shor, P. W., Algorithms for quantum computation, discrete logarithms and factorizing, in Proc. 35th Annual Symp. Foundations of Computer Science (IEEE, 1994).
[7] Shor, P. W., Scheme for reducing decoherence in quantum computer memory, Phys. Rev. A52(4) (1995) R2493.
[8] Preskill, J., Reliable quantum computers, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.454(1969) (1998) 385-410. · Zbl 0915.68051
[9] Preskill, J., Fault-tolerant quantum computation, in Introduction to Quantum Computation and Information (World Scientific, 1998), pp. 213-269.
[10] Preskill, J., Lecture Notes for Physics 229: Quantum Information and Computation (Barron, 2015).
[11] Ashtekar, A. and Schilling, T. A., Geometrical formulation of quantum mechanics, in On Einstein’s Path, ed. Harvey, A. (Springer, New York, 1999).
[12] Kitaev, A. Y., Fault-tolerant quantum computation by anyons, Ann. Phys.303(1) (2003) 2-30. · Zbl 1012.81006
[13] Kitaev, A. Y., Periodic table for topological insulators and superconductors, AIP Conf. Proc.1134 (2009) 22. · Zbl 1180.82221
[14] Dennis, E., Kitaev, A., Landahl, A. and Preskill, J., Topological quantum memory, J. Math. Phys.43(9) (2002) 4452-4505. · Zbl 1060.94045
[15] Barenco, A., Bennett, C. H., Cleve, R., DiVincenzo, D. P., Margolus, N., Shor, P., Sleator, T., Smolin, J. and Weinfurther, H., Elementary gates for quantum computation, Phys. Rev. A52(5) (1995) 3457-3467.
[16] Fioresi, R. and Zanchetta, F., Deep learning and geometric deep learning: An introduction for mathematicians and physicists, Int. J. Geom. Methods Mod. Phys.20(12) (2023) 2330006. · Zbl 1531.68069
[17] Amari, S.-I., Natural gradient works efficiently in learning, Neural Comput.10(2) (1998) 251-276.
[18] Stokes, J., Izaac, J., Killoran, N. and Carleo, G., Quantum natural gradient, Quantum4 (2020) 269.
[19] Helstrom, C. W., Quantum Detection and Estimation Theory (Academic Press, 1976). · Zbl 1332.81011
[20] Liu, J., Jing, X., Zhong, W. and Wang, X., Quantum Fisher information for density matrices with arbitrary ranks, Commun. Theor. Phys.61(1) (2014) 45-50. · Zbl 1284.81064
[21] Huybrechts, D., Complex Geometry: An Introduction (Springer GTM, 2005). · Zbl 1055.14001
[22] X.-Y. Hou, Z. Zhou, X. Wang, H. Guo and C.-C. Chien, Local geometry and quantum geometric tensor of mixed states, Preprint arXiv:2305.07597.
[23] Facchi, P., Kulkarni, R., Manko, V. I., Marmo, G., Sudarshan, E. C. G. and Ventriglia, F., Classical and quantum Fisher information in the geometrical formulation of quantum mechanics, Phys. Lett. A374 (2010) 4801-4803. · Zbl 1238.81013
[24] Coecke, B. and Duncan, R., Interacting quantum observables, in ICALP 2008: Automata, Languages and Programming, , Vol. 5126 (Springer, Berlin, Heidelberg. 2008), pp. 298-310. · Zbl 1155.81316
[25] Coecke, B. and Duncan, R., Interacting quantum observables: categorical algebra and diagrammatics, New J. Phys.13 (2011) 043016. · Zbl 1448.81025
[26] Majid, S., Quantum and braided ZX calculus, J. Phys. A: Math. Theor.55 (2022) 254007. · Zbl 1507.81125
[27] J. van de Wetering, ZX-calculus for the working quantum computer scientist, (2020), https://api.semanticscholar.org/CorpusID:229680014.
[28] de Beaudrap, N., Kissinger, A. and van de Wetering, J., Circuit extraction for ZX-diagrams can be # P-hard, in 49th Int. Colloquium on Automata, Languages, and Programming (ICALP 2022), , Vol. 229 (Schloss Dagstuhl - Leibniz-Zentrum fr Informatik, 2022), pp. 119:1-119:19.
[29] Montgomery, S., Hopf Algebras and Their Actions on Rings, , Vol. 82 (American Math Society, Providence, RI, 1993). · Zbl 0793.16029
[30] Kassel, C., Quantum Groups (Springer-Verlag, GTM, 1995). · Zbl 0808.17003
[31] Majid, S., Foundations of Quantum Groups Theory (Cambridge University Press, 1995). · Zbl 0857.17009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.