×

Generalized uniform optimization for robust adaptive Buck converter with uncertain perturbations. (English) Zbl 07909859

Summary: This paper presents an event-triggered impulse (ETI) control mechanism with generalized uniform optimization, endowing robust adaptive for various uncertain Buck converter perturbations. An impulse compensates for the state fluctuation error, and the event triggering mechanism (ETM) is introduced into the control process of the stochastic model of the Buck converter. The mean square stability theory of linear matrix inequality (LMI) stochastic systems is provided, wherein the cost function incorporates uncertain perturbation-induced state feedback impulses and adaptive system tuning. Unlike traditional event-triggered control with manually determined triggering times, ETI is activated only when events conform to the optimal design, significantly enhancing error-tracking accuracy and adaptive capability. Moreover, the parameters of the optimal controller remain independent of the statistical characteristics of uncertain noise, ensuring globally optimal operational control and model generality. Namely, the proposed method demonstrates versatility by extending its application to DC motor control, addressing various perturbations Buck converters encounter. Finally, the designed controller can closely track the required angular velocity trajectory across sudden changes in system uncertain perturbation.

MSC:

93E15 Stochastic stability in control theory
93C27 Impulsive control/observation systems
Full Text: DOI

References:

[1] Zhi, Y.; Weiqing, W.; Jing, C.; Razmjooy, N., Interval linear quadratic regulator and its application for speed control of dc motor in the presence of uncertainties, ISA Trans., 125, 252-259, 2022
[2] Zhang, H.; Wu, H.; Jin, H.; Li, H., High-dynamic and low-cost sensorless control method of high-speed brushless dc motor, IEEE Trans. Ind. Inform., 2022
[3] Devi Vidhya, S.; Balaji, M., Hybrid fuzzy pi controlled multi-input dc/dc converter for electric vehicle application, Automatika, 61, 1, 79-91, 2020
[4] Paulson, J. A.; Santos, T. L.; Mesbah, A., Mixed stochastic-deterministic tube mpc for offset-free tracking in the presence of plant-model mismatch, J. Process Control, 83, 102-120, 2019
[5] Lu, E.; Li, W.; Wang, S.; Zhang, W.; Luo, C., Disturbance rejection control for pmsm using integral sliding mode based composite nonlinear feedback control with load observer, ISA Trans., 116, 203-217, 2021
[6] Narendra, A.; Naik, N. V.; Panda, A. K.; Tiwary, N., A comprehensive review of pv driven electrical motors, Sol. Energy, 195, 278-303, 2020
[7] Sorouri, H.; Sedighizadeh, M.; Oshnoei, A.; Khezri, R., An intelligent adaptive control of dc-dc power buck converters, Int. J. Electr. Power Energy Syst., 141, Article 108099 pp., 2022
[8] Boukerdja, M.; Chouder, A.; Hassaine, L.; Bouamama, B. O.; Issa, W.; Louassaa, K., \( h_\infty\) Based control of a dc/dc buck converter feeding a constant power load in uncertain dc microgrid system, ISA Trans., 105, 278-295, 2020
[9] Wu, L.; Liu, J.; Vazquez, S.; Mazumder, S. K., Sliding mode control in power converters and drives: A review, IEEE/CAA J. Autom. Sin., 2021
[10] Wang, J.; Rong, J.; Yu, L., Dynamic prescribed performance sliding mode control for dc-dc buck converter system with mismatched time-varying disturbances, ISA Trans., 129, 546-557, 2022
[11] Bist, V.; Singh, B., A brushless dc motor drive with power factor correction using isolated zeta converter, IEEE Trans. Ind. Inform., 10, 4, 2064-2072, 2014
[12] Wang, J.; Rong, J.; Yu, L., Reduced-order extended state observer based event-triggered sliding mode control for dc-dc buck converter system with parameter perturbation, Asian J. Control, 23, 3, 1591-1601, 2021 · Zbl 07886784
[13] RakhtAla, S. M.; Yasoubi, M.; HosseinNia, H., Design of second order sliding mode and sliding mode algorithms: a practical insight to dc-dc buck converter, IEEE/CAA J. Autom. Sin., 4, 3, 483-497, 2017
[14] Zhang, Q.; Zhuang, X.; Liu, Y.; Wang, C.; Guo, H., A novel control strategy for mode seamless switching of pv converter in dc microgrid based on double integral sliding mode control, ISA Trans., 100, 469-480, 2020
[15] Yang, J.; Wu, H.; Hu, L.; Li, S., Robust predictive speed regulation of converter-driven dc motors via a discrete-time reduced-order gpio, IEEE Trans. Ind. Electron., 66, 10, 7893-7903, 2018
[16] Garg, M. M.; Hote, Y. V.; Pathak, M. K.; Behera, L., An approach for buck converter pi controller design using stability boundary locus, (2018 IEEE/PES Transmission and Distribution Conference and Exposition. 2018 IEEE/PES Transmission and Distribution Conference and Exposition, T & D, 2018, IEEE), 1-5
[17] Almaged, M.; Khather, S. I.; Abdulla, A. I.; Amjed, M. R., Comparative study of lqr, lqg and pi controller based on genetic algorithm optimization for buck converters, (2019 11th International Conference on Electrical and Electronics Engineering. 2019 11th International Conference on Electrical and Electronics Engineering, ELECO, 2019, IEEE), 1012-1017
[18] Kurucsó, B.; Peschka, A.; Stumpf, P.; Nagy, I.; Vajk, I., State space control of quadratic boost converter using lqr and lqg approaches, (2015 Intl Aegean Conference on Electrical Machines & Power Electronics (ACEMP), 2015 Intl Conference on Optimization of Electrical & Electronic Equipment (OPTIM) & 2015 Intl Symposium on Advanced Electromechanical Motion Systems. 2015 Intl Aegean Conference on Electrical Machines & Power Electronics (ACEMP), 2015 Intl Conference on Optimization of Electrical & Electronic Equipment (OPTIM) & 2015 Intl Symposium on Advanced Electromechanical Motion Systems, ELECTROMOTION, 2015, IEEE), 642-648
[19] Adaldo, A.; Alderisio, F.; Liuzza, D.; Shi, G.; Dimarogonas, D. V.; Di Bernardo, M.; Johansson, K. H., Event-triggered pinning control of complex networks with switching topologies, (53rd IEEE Conference on Decision and Control, 2014, IEEE), 2783-2788
[20] Davari, M.; Mohamed, Y. A.-R. I., Dynamics and robust control of a grid-connected vsc in multiterminal dc grids considering the instantaneous power of dc-and ac-side filters and dc grid uncertainty, IEEE Trans. Power Electron., 31, 3, 1942-1958, 2015
[21] Sollecito, W.; Swann, D., Computer evaluation of high-temperature aircraft ac electrical system designs, Trans. Am. Inst. Electr. Eng. II, 78, 6, 434-444, 1960
[22] Remes, C. L.; Rosa, M. B.; Heerdt, J. A.; Oliveira, S. V., Lqg controller in cascade loop tuned by pso applied to a dc-dc converter, Asian J. Control, 2020
[23] Zhao, C.; Guo, D., Particle swarm optimization algorithm with self-organizing mapping for nash equilibrium strategy in application of multiobjective optimization, IEEE Trans. Neural Netw. Learn. Syst., 2020
[24] Tan, X.; Cao, J.; Li, X., Consensus of leader-following multiagent systems: A distributed event-triggered impulsive control strategy, IEEE Trans. Cybern., 49, 3, 792-801, 2018
[25] Hu, S.; Yuan, P.; Yue, D.; Dou, C.; Cheng, Z.; Zhang, Y., Attack-resilient event-triggered controller design of dc microgrids under dos attacks, IEEE Trans. Circuits Syst. I. Regul. Pap., 67, 2, 699-710, 2019 · Zbl 1469.94243
[26] Vadivel, R.; Santhosh, T.; Unyong, B.; Zhu, Q.; Cao, J.; Gunasekaran, N., Stabilization of photovoltaic systems with fuzzy event-triggered communication, Int. J. Fuzzy Syst., 25, 4, 1656-1673, 2023
[27] Hsieh, F.-H.; Yen, N.-Z.; Juang, Y.-T., Optimal controller of a buck dc-dc converter using the uncertain load as stochastic noise, IEEE Trans. Circuits Syst. II, 52, 2, 77-81, 2005
[28] Liu, B., Stability of solutions for stochastic impulsive systems via comparison approach, IEEE Trans. Autom. Control, 53, 9, 2128-2133, 2008 · Zbl 1367.93523
[29] Ioannidis, G.; Kandianis, A.; Manias, S., Novel control design for the buck converter, IEE Proc., Electr. Power Appl., 145, 1, 39-47, 1998
[30] Qiao, Y.; Xiao, W.; Li, L.; Shi, Z.; Guo, D., Synchronous control of cuk dc converter via pulse soliton, (IEEE 14th International Conference on Anti-Counterfeiting, Security, and Identification. IEEE 14th International Conference on Anti-Counterfeiting, Security, and Identification, ASID, 2020, IEEE), 112-115
[31] Ren, Y.; Jia, X.; Sakthivel, R., The \(p\) th moment stability of solutions to impulsive stochastic differential equations driven by g-brownian motion, Appl. Anal., 96, 6, 988-1003, 2017 · Zbl 1364.93852
[32] Song, X.; Zhang, Q.; Song, S.; Ahn, C. K., Event-triggered underactuated control for networked coupled pde-ode systems with singular perturbations, IEEE Syst. J., 2023
[33] Li, X.; Yang, X.; Cao, J., Event-triggered impulsive control for nonlinear delay systems, Automatica, 117, Article 108981 pp., 2020 · Zbl 1441.93179
[34] Xu, W.; Niu, Y.; Rong, H.; Sun, Z., P-moment stability of stochastic impulsive differential equations and its application in impulsive control, Sci. China Ser. E, 52, 3, 782-786, 2009 · Zbl 1178.93145
[35] Yao, F.; Qiu, L.; Shen, H., On input-to-state stability of impulsive stochastic systems, J. Franklin Inst., 351, 9, 4636-4651, 2014 · Zbl 1395.93573
[36] Liu, B.; Zhang, C.; Liu, D.-N.; Huang, J.-X., Almost exponential stabilization for stochastic dynamical systems under event-triggered impulsive control, (2017 29th Chinese Control and Decision Conference. 2017 29th Chinese Control and Decision Conference, CCDC, 2017, IEEE), 2471-2474
[37] Li, X.; Peng, D.; Cao, J., Lyapunov stability for impulsive systems via event-triggered impulsive control, IEEE Trans. Autom. Control, 65, 11, 4908-4913, 2020 · Zbl 1536.93638
[38] Friedman, A., Stochastic differential equations and applications, (Stochastic Differential Equations, 2010, Springer), 75-148
[39] O. Calin, An Introduction to Stochastic Calculus with Applications to Finance, Ann Arbor, 2012.
[40] Klimešová, M., Stability of the stochastic differential equations, 2015
[41] Chen, W.-H.; Zheng, W. X.; Lu, X., Impulsive stabilization of a class of singular systems with time-delays, Automatica, 83, 28-36, 2017 · Zbl 1373.93268
[42] Li, X.; Zhu, H.; Song, S., Input-to-state stability of nonlinear systems using observer-based event-triggered impulsive control, IEEE Trans. Syst. Man Cybern.: Syst., 2020
[43] Gu, Z.; Zhang, T.; Yang, F.; Zhao, H.; Shen, M., A novel event-triggered mechanism for networked cascade control system with stochastic nonlinearities and actuator failures, J. Franklin Inst., 356, 4, 1955-1974, 2019 · Zbl 1409.93046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.