×

Robust sliding-mode observer for unbounded state nonlinear systems. (English) Zbl 07909742

Summary: Designing a full-state observer for nonlinear systems has always been accompanied by challenges and restrictive constraints. Mainly, applying a state observer in nonlinear systems with non-minimum phase characteristics is more challenging when the limiting constraints are not satisfied due to diverging internal dynamics. In this paper, a robust sliding-mode observer approach has been successfully employed to estimate the states of nonlinear systems with unbounded and diverging dynamics. The design principles of this observer are based on applying a classifying algorithm in single-input single-output and multiple-input multiple-output nonlinear systems. It is noteworthy that this observer is highly robust against disturbance, uncertainty and measurement noise, and its conditions are less conservative compared to previous nonlinear sliding-mode observers. One novel feature of the proposed observer is that while the system’s state gets unbounded and diverged in fault-occurring scenarios or critical circumstances, this observer retains accuracy. The efficiency of the proposed observer is verified in the simulation results for two nonlinear industrial systems, including a hydro-turbine power generation plant and a continuous stirred tank reactor.

MSC:

93B12 Variable structure systems
93B53 Observers
93C10 Nonlinear systems in control theory
Full Text: DOI

References:

[1] Astolfi, D., & Marconi, L. (2015). A high-gain nonlinear observer with limited gain power. IEEE Transactions on Automatic Control, 60(11), 3059-3064. · Zbl 1360.93112
[2] Aurora, C., & Ferrara, A. (2007). A sliding mode observer for sensorless induction motor speed regulation. International Journal of Systems Science, 38(11), 913-929. · Zbl 1160.93303
[3] Barbot, J. P., Boukhobza, T., & Djemai, M. (1996). Sliding mode observer for triangular input form. In Proceedings of 35th IEEE Conference on Decision and Control (Vol. 2, pp. 1489-1490). IEEE.
[4] Behera, A. K., Mondal, S., & Bandyopadhyay, B. (2023). A decoupled design of a robust sliding mode observer. Automatica, 148, Article 110799. · Zbl 1507.93047
[5] Busawon, K., Farza, M., & Hammouri, H. (1998). Observer design for a special class of nonlinear systems. International Journal of Control, 71(3), 405-418. · Zbl 0944.93003
[6] Chen, C.-T. (1984). Linear system theory and design. Oxford University Press.
[7] Chen, W., & Saif, M. (2007). A sliding mode observer-based strategy for fault detection, isolation, and estimation in a class of Lipschitz nonlinear systems. International Journal of Systems Science, 38(12), 943-955. · Zbl 1283.93062
[8] Czyzniewski, M., & Łangowski, R. (2022). A robust sliding mode observer for nonlinear uncertain biochemical systems. ISA Transactions, 123, 25-45.
[9] Drakunov, S., & Utkin, V. (1995). Sliding mode observers. Tutorial. In Proceedings of 1995 34th IEEE Conference on Decision and Control (Vol. 4, pp. 3376-3378). IEEE.
[10] Edwards, C., & Spurgeon, S. K. (1994). On the development of discontinuous observers. International Journal of Control, 59(5), 1211-1229. · Zbl 0810.93009
[11] Engell, S., & Klatt, K.-U. (1993). Nonlinear control of a non-minimum-phase CSTR. In American Control Conference (pp. 2941-2945). IEEE.
[12] Freidovich, L. B., & Khalil, H. K. (2007). Lyapunov-based switching control of nonlinear systems using high-gain observers. Automatica, 43(1), 150-157. · Zbl 1140.93456
[13] Freidovich, L. B., & Khalil, H. K. (2008). Performance recovery of feedback-linearization-based designs. IEEE Transactions on Automatic Control, 53(10), 2324-2334. · Zbl 1367.93498
[14] Fridman, L., Aguilar, L. T., & Iriarte, R. (2019). High-order sliding-mode observer-based input output linearization. International Journal of Robust and Nonlinear Control, 29(3), 519-521. · Zbl 1411.00040
[15] Fridman, L., Shtessel, Y., Edwards, C., & Yan, G. (2008). Higher-order sliding-mode observer for state estimation and input reconstruction in nonlinear systems. International Journal of Robust and Nonlinear Control, 18(4-5), 399-412. · Zbl 1284.93057
[16] Gauthier, J. P., Hammouri, H., & Othman, S. (1992). A simple observer for nonlinear systems applications to bioreactors. IEEE Transactions on Automatic Control, 37(6), 875-880. · Zbl 0775.93020
[17] Huang, S., Zhou, B., Bu, S., Li, C., Zhang, C., Wang, H., & Wang, T. (2019). Robust fixed-time sliding mode control for fractional-order nonlinear hydro-turbine governing system. Renewable Energy, 139, 447-458.
[18] Khalil, H. K. (2015). Nonlinear control systems. Pearson.
[19] Khelouat, S., Laleg-Kirati, T. M., Benalia, A., Boukhetala, D., & Djemai, M. (2019). A geometric approach to nonlinear fault detection and isolation in a hybrid three-cell converter. International Journal of Systems Science, 50(5), 1069-1088. · Zbl 1483.93080
[20] Klatt, K.-U., & Engell, S. (1998). Gain-scheduling trajectory control of a continuous stirred tank reactor. Computer Applications in Chemical Engineering, 22(4-5), 491-502.
[21] Krener, A. J., & Isidori, A. (1983). Linearization by output injection and nonlinear observers. System and Control Letters, 3(1), 47-52. · Zbl 0524.93030
[22] Krener, A. J., & Respondek, W. (1985). Nonlinear observers with linearizable error dynamics. SIAM Journal on Control and Optimization, 23(2), 197-216. · Zbl 0569.93035
[23] Li, S., Yang, J., Chen, W.-H., & Chen, X. (2016). Disturbance observer-based control: methods and applications. CRC Press.
[24] Luo, P., Yin, Z., Zhang, Z., & Zhang, Y. (2024). Diversified diagnosis strategy for PMSM inter-turn short-circuit fault via novel sliding mode observer. IEEE Transactions on Power Electronics, 39(4), 4149-4159. doi:
[25] Nguyen, M. H., Dao, H. V., & Ahn, K. K. (2023). Extended sliding mode observer-based high-accuracy motion control for uncertain electro-hydraulic systems. International Journal of Robust and Nonlinear Control, 33(2), 1351-1370. · Zbl 1531.93041
[26] Raghavan, S., & Hedrick, J. K. (1994). Observer design for a class of nonlinear systems. International Journal of Control, 59(2), 515-528. · Zbl 0802.93007
[27] Shajiee, M., Hosseini Sani, S. K., Naghibi-Sistani, M. B., & Shamaghdari, S. (2020). Robust dynamic sliding mode observer design for a class of nonlinear systems. Transactions of the Institute of Measurement and Control, 43(2), 335-343.
[28] Shim, H., Back, J., Eun, Y., Park, G., & Kim, J. (2022). Zero-Dynamics attack, variations, and countermeasures. In Lecture notes in control and information sciences (pp. 31-61). Springer. · Zbl 1536.93306
[29] Shtessel, Y. B., Baev, S., Edwards, C., & Spurgeon, S. (2010). HOSM observer for a class of non-minimum phase causal nonlinear MIMO systems. IEEE Transactions on Automatic Control, 55(2), 543-548. · Zbl 1368.93058
[30] Slotine, J.-J., Hedrick, J. K., & Misawa, E. A. (1987). On sliding observers for nonlinear systems. Journal of Dynamic Systems, Measurement, and Control, 109(3), 245-252. · Zbl 0661.93011
[31] Slotine, J.-J., & Li, W. (1991). Applied nonlinear control. Prentice Hall. · Zbl 0753.93036
[32] Slotine, J.-J., & Sastry, S. S. (1983). Tracking control of nonlinear systems using sliding surfaces, with application to robot manipulators. International Journal of Control, 38(2), 465-492. · Zbl 0519.93036
[33] Teixeira, A., Shames, I., Sandberg, H., & Johansson, K. H. (2012). Revealing stealthy attacks in control systems. In Annual Allerton Conference on Communication, Control, and Computing (Allerton) (pp. 1806-1813). IEEE.
[34] Utkin, V. I., Poznyak, A. S., Orlov, Y., & Polyakov, A. (2020). Lyapunov Stability tools for sliding modes. In SpringerBriefs in mathematics (pp. 51-53). Springer. · Zbl 1435.93003
[35] Van de vusse, J. G. (1964). Plug-flow type reactor versus tank reactor. Chemical Engineering Science, 19(12), 994-996.
[36] Wang, G.-B., Peng, S.-S., & Huang, H.-P. (1997). A sliding observer for nonlinear process control. Chemical Engineering Science, 52(5), 787-805.
[37] Wang, W., Xu, J., & Qian, Y. (2016). Application of non-minimum phase system control strategy to hydro turbine set. In Chinese Control and Decision Conference (CCDC) (pp. 1628-1633). IEEE.
[38] Xiong, Y., & Saif, M. (2001). Sliding mode observer for nonlinear uncertain systems. IEEE Transactions on Automatic Control, 46(12), 2012-2017. · Zbl 1003.93007
[39] Zhao, Z., Cao, D., Yang, J., & Wang, H. (2020). High-order sliding mode observer-based trajectory tracking control for a quadrotor UAV with uncertain dynamics. Nonlinear Dynamics, 102(4), 2583-2596. · Zbl 1517.93018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.