×

Invariant approach to the driven Jaynes-Cummings model. (English) Zbl 07908485

Summary: We investigate the dynamics of the driven Jaynes-Cummings model, where a two-level atom interacts with a quantized field and both, atom and field, are driven by an external classical field. Via an invariant approach, we are able to transform the corresponding Hamiltonian into the one of the standard Jaynes-Cummings model. Subsequently, the exact analytical solution of the Schrödinger equation for the driven system is obtained and employed to analyze some of its dynamical variables.

MSC:

81Vxx Applications of quantum theory to specific physical systems
81Pxx Foundations, quantum information and its processing, quantum axioms, and philosophy
81-XX Quantum theory

Software:

QuTiP

References:

[1] E. T. Jaynes and F. W. Cummings, Comparison of quantum and semiclassical ra-diation theories with application to the beam maser, Proc. IEEE 51, 89 (1963), doi:10.1109/PROC.1963.1664. · doi:10.1109/PROC.1963.1664
[2] B. W. Shore and P. L. Knight, The Jaynes-Cummings model, J. Mod. Opt. 40, 1195 (1993), doi:10.1080/09500349314551321. · Zbl 0942.81636 · doi:10.1080/09500349314551321
[3] T. Niemczyk et al., Circuit quantum electrodynamics in the ultrastrong-coupling regime, Nat. Phys. 6, 772 (2010), doi:10.1038/nphys1730. · doi:10.1038/nphys1730
[4] J. Casanova, G. Romero, I. Lizuain, J. J. García-Ripoll and E. Solano, Deep strong coupling regime of the Jaynes-Cummings model, Phys. Rev. Lett. 105, 263603 (2010), doi:10.1103/PhysRevLett.105.263603. · doi:10.1103/PhysRevLett.105.263603
[5] D. Braak, Integrability of the Rabi model, Phys. Rev. Lett. 107, 100401 (2011), doi:10.1103/PhysRevLett.107.100401. · doi:10.1103/PhysRevLett.107.100401
[6] G. S. Agarwal. Quantum optics, Cambridge University Press, Cambridge, UK, ISBN 9781139786218 (2012). · Zbl 1390.82002
[7] C. Gerry and P. Knight, Introductory quantum optics, Cambridge University Press, Cam-bridge, UK, ISBN 9780521527354 (2004), doi:10.1017/CBO9780511791239. · doi:10.1017/CBO9780511791239
[8] A. B. Klimov and S. M. Chumakov, The Jaynes-Cummings model, in A group-theoretical approach to quantum optics, Wiley & Sons, Hoboken, USA, ISBN 9783527624003 (2009), doi:10.1002/9783527624003.ch5. · doi:10.1002/9783527624003.ch5
[9] D. F. Walls and G. J. Milburn (eds.), Quantum optics, Springer, Berlin, Heidelberg, Ger-many, ISBN 9783540285731 (2008), doi:10.1007/978-3-540-28574-8. · Zbl 1163.81001 · doi:10.1007/978-3-540-28574-8
[10] A. M. Abdel-Hafez, A. -S F. Obada and M. M. A. Ahmad, N-level atom and (N -1) modes: An exactly solvable model with detuning and multiphotons, J. Phys. A: Math. Gen. 20, L359 (1987), doi:10.1088/0305-4470/20/6/004. · doi:10.1088/0305-4470/20/6/004
[11] V. Bužek, N-level atom interacting with single-mode radiation field: An exactly solvable model with multiphoton transitions and intensity-dependent coupling, J. Mod. Opt. 37, 1033 (1990), doi:10.1080/09500349014551091. · doi:10.1080/09500349014551091
[12] E. A. Kochetov, A generalized N-level single-mode Jaynes-Cummings model, Phys. A: Stat. Mech. Appl. 150, 280 (1988), doi:10.1016/0378-4371(88)90060-X. · doi:10.1016/0378-4371(88)90060-X
[13] M. S. Abdalla, M. M. A. Ahmed and A.-S. Obada, Multimode and multiphoton processes in a non-linear Jaynes-Cummings model, Phys. A: Stat. Mech. Appl. 170, 393 (1991), doi:10.1016/0378-4371(91)90051-D. · doi:10.1016/0378-4371(91)90051-D
[14] C. V. Sukumar and B. Buck, Multi-phonon generalisation of the Jaynes-Cummings model, Phys. Lett. A 83, 211 (1981), doi:10.1016/0375-9601(81)90825-2. · doi:10.1016/0375-9601(81)90825-2
[15] G. Zhu, S. Schmidt and J. Koch, Dispersive regime of the Jaynes-Cummings and Rabi lattice, New J. Phys. 15, 115002 (2013), doi:10.1088/1367-2630/15/11/115002. · doi:10.1088/1367-2630/15/11/115002
[16] M. Sebawe. Abdalla, M. M. A. Ahmed and A.-S. Obada, Dynamics of a non-linear Jaynes-Cummings model, Phys. A: Stat. Mech. Appl. 162, 215 (1990), doi:10.1016/0378-4371(90)90440-4. · doi:10.1016/0378-4371(90)90440-4
[17] O. de los Santos-Sánchez, C. González-Gutiérrez and J. Récamier, Nonlinear Jaynes-Cummings model for two interacting two-level atoms, J. Phys. B: At. Mol. Opt. Phys. 49, 165503 (2016), doi:10.1088/0953-4075/49/16/165503. · doi:10.1088/0953-4075/49/16/165503
[18] B. M. Rodríguez-Lara, F. Soto-Eguibar, A. Z. Cárdenas and H. M. Moya-Cessa, A classi-cal simulation of nonlinear Jaynes-Cummings and Rabi models in photonic lattices, Opt. Express 21, 12888 (2013), doi:10.1364/OE.21.012888. · doi:10.1364/OE.21.012888
[19] C. Saavedra, J. C. Retamal, A. B. Klimov and S. M. Chumakov, Jaynes-Cummings model with dissipation, in Coherence and quantum optics VII, Springer, Boston, USA, ISBN 9781475797442 (1996), doi:10.1007/978-1-4757-9742-8_52. · Zbl 1060.81626 · doi:10.1007/978-1-4757-9742-8_52
[20] M. Scala, B. Militello, A. Messina, J. Piilo and S. Maniscalco, Microscopic derivation of the Jaynes-Cummings model with cavity losses, Phys. Rev. A 75, 013811 (2007), doi:10.1103/PhysRevA.75.013811. · doi:10.1103/PhysRevA.75.013811
[21] S. J. D. Phoenix and P. L. Knight, Establishment of an entangled atom-field state in the Jaynes-Cummings model, Phys. Rev. A 44, 6023 (1991), doi:10.1103/PhysRevA.44.6023. · doi:10.1103/PhysRevA.44.6023
[22] I. Ramos-Prieto, B. M. Rodríguez-Lara and H. M. Moya-Cessa, Engineering nonlinear co-herent states as photon-added and photon-subtracted coherent states, Int. J. Quantum Inf. 12, 1560005 (2014), doi:10.1142/S0219749915600059. · Zbl 1309.81111 · doi:10.1142/S0219749915600059
[23] A. Vidiella-Barranco, H. Moya-Cessa and V. Bužek, Interaction of superpositions of coherent states of light with two-level atoms, J. Mod. Opt. 39, 1441 (1992), doi:10.1080/09500349214551481. · doi:10.1080/09500349214551481
[24] S. Haroche, M. Brune and J. M. Raimond, Manipulation of optical fields by atomic in-terferometry: Quantum variations on a theme by young, Appl. Phys. B 54, 355 (1992), doi:10.1007/BF00325380. · doi:10.1007/BF00325380
[25] J. M. Raimond, M. Brune and S. Haroche, Manipulating quantum entangle-ment with atoms and photons in a cavity, Rev. Mod. Phys. 73, 565 (2001), doi:10.1103/RevModPhys.73.565. · Zbl 1205.81029 · doi:10.1103/RevModPhys.73.565
[26] P. Alsing, D.-S. Guo and H. J. Carmichael, Dynamic Stark effect for the Jaynes-Cummings system, Phys. Rev. A 45, 5135 (1992), doi:10.1103/PhysRevA.45.5135. · doi:10.1103/PhysRevA.45.5135
[27] S. M. Dutra, P. L. Knight and H. Moya-Cessa, Large-scale fluctuations in the driven Jaynes-Cummings model, Phys. Rev. A 49, 1993 (1994), doi:10.1103/PhysRevA.49.1993. · doi:10.1103/PhysRevA.49.1993
[28] R. J. Thompson, G. Rempe and H. J. Kimble, Observation of normal-mode splitting for an atom in an optical cavity, Phys. Rev. Lett. 68, 1132 (1992), doi:10.1103/PhysRevLett.68.1132. · doi:10.1103/PhysRevLett.68.1132
[29] J. Casanova, R. Puebla, H. Moya-Cessa and M. B. Plenio, Connecting nth order generalised quantum Rabi models: Emergence of nonlinear spin-boson coupling via spin rotations, npj Quantum Inf. 4, 47 (2018), doi:10.1038/s41534-018-0096-9. · doi:10.1038/s41534-018-0096-9
[30] C. Di Fidio, W. Vogel, R. L. de Matos Filho and L. Davidovich, Single-trapped-ion vibronic Raman laser, Phys. Rev. A 65, 013811 (2001), doi:10.1103/PhysRevA.65.013811. · doi:10.1103/PhysRevA.65.013811
[31] S. Wallentowitz, W. Vogel and P. L. Knight, High-order nonlinearities in the motion of a trapped atom, Phys. Rev. A 59, 531 (1999), doi:10.1103/PhysRevA.59.531. · doi:10.1103/PhysRevA.59.531
[32] H. R. Lewis, Classical and quantum systems with time-dependent harmonic-oscillator-type Hamiltonians, Phys. Rev. Lett. 18, 510 (1967), doi:10.1103/PhysRevLett.18.510. · doi:10.1103/PhysRevLett.18.510
[33] H. R. Lewis and W. B. Riesenfeld, An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field, J. Math. Phys. 10, 1458 (1969), doi:10.1063/1.1664991. · Zbl 1317.81109 · doi:10.1063/1.1664991
[34] R. J. Glauber, Coherent and incoherent states of the radiation field, Phys. Rev. 131, 2766 (1963), doi:10.1103/PhysRev.131.2766. · Zbl 1371.81166 · doi:10.1103/PhysRev.131.2766
[35] S. J. D. Phoenix and P. L. Knight, Fluctuations and entropy in models of quantum optical resonance, Ann. Phys. 186, 381 (1988), doi:10.1016/0003-4916(88)90006-1. · Zbl 0709.76533 · doi:10.1016/0003-4916(88)90006-1
[36] V. Bužek, H. Moya-Cessa, P. L. Knight and S. J. D. Phoenix, Schrödinger-cat states in the resonant Jaynes-Cummings model: Collapse and revival of oscillations of the photon-number distribution, Phys. Rev. A 45, 8190 (1992), doi:10.1103/PhysRevA.45.8190. · doi:10.1103/PhysRevA.45.8190
[37] S. Stenholm, Quantum theory of electromagnetic fields interacting with atoms and molecules, Phys. Rep. 6, 1 (1973), doi:10.1016/0370-1573(73)90011-2. · doi:10.1016/0370-1573(73)90011-2
[38] J. R. Johansson, P. D. Nation and F. Nori, QuTiP 2: A Python framework for the dynamics of open quantum systems, Comput. Phys. Commun. 184, 1234 (2013), doi:10.1016/j.cpc.2012.11.019. · doi:10.1016/j.cpc.2012.11.019
[39] L. Mandel, Sub-Poissonian photon statistics in resonance fluorescence, Opt. Lett. 4, 205 (1979), doi:10.1364/OL.4.000205. · doi:10.1364/OL.4.000205
[40] A. B. Klimov and L. L. Sanchez-Soto, Method of small rotations and effective Hamiltonians in nonlinear quantum optics, Phys. Rev. A 61, 063802 (2000), doi:10.1103/PhysRevA.61.063802. · doi:10.1103/PhysRevA.61.063802
[41] A. de Oliveira Junior, M. Perarnau-Llobet, N. Brunner, and P. Lipka-Bartosik, Quantum catalysis in cavity QED, (arXiv preprint) doi:10.48550/arXiv.2305.19324. · doi:10.48550/arXiv.2305.19324
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.