×

The quasilocal energy and thermodynamic first law in accelerating AdS black holes. (English) Zbl 07906929

Summary: We scrutinize the conserved energy of an accelerating AdS black hole by employing the off-shell quasilocal formalism, which amalgamates the ADT formalism with the covariant phase space approach. In the presence of conical singularities in the accelerating black hole, the energy expression is articulated through the surface term derived from our formalism. The essence of our analysis of the quasilocal energy resides in the surface contributions coming from the conical singularities as well as the conventional radial boundary. Consequently, the resultant conserved quasilocal energy naturally conforms the thermodynamic first law for the black hole without necessitating any augmentation of thermodynamic variables.

MSC:

81-XX Quantum theory
83-XX Relativity and gravitational theory

Keywords:

black holes

References:

[1] Bekenstein, J. D., Black holes and entropy, Phys. Rev. D, 7, 2333, 1973 · Zbl 1369.83037
[2] Bekenstein, J. D., Generalized second law of thermodynamics in black hole physics, Phys. Rev. D, 9, 3292, 1974
[3] Hawking, S. W., Particle creation by black holes, Commun. Math. Phys., 43, 199, 1975 · Zbl 1378.83040
[4] Frolov, V. P.; Novikov, I., Dynamical origin of the entropy of a black hole, Phys. Rev. D, 48, 4545, 1993
[5] Dutta, K.; Ray, S.; Traschen, J., Boost mass and the mechanics of accelerated black holes, Class. Quantum Gravity, 23, 335, 2006 · Zbl 1087.83043
[6] Bilal, M.; Saifullah, K., Thermodynamics of accelerating and rotating black holes, Astrophys. Space Sci., 343, 165, 2013 · Zbl 1286.83051
[7] Appels, M.; Gregory, R.; Kubiznak, D., Thermodynamics of accelerating black holes, Phys. Rev. Lett., 117, Article 131303 pp., 2016
[8] Astorino, M., CFT duals for accelerating black holes, Phys. Lett. B, 760, 393, 2016 · Zbl 1398.83037
[9] Astorino, M., Thermodynamics of regular accelerating black holes, Phys. Rev. D, 95, Article 064007 pp., 2017
[10] Appels, M.; Gregory, R.; Kubiznak, D., Black hole thermodynamics with conical defects, J. High Energy Phys., 05, Article 116 pp., 2017 · Zbl 1380.83112
[11] Gregory, R., Accelerating black holes, J. Phys. Conf. Ser., 942, Article 012002 pp., 2017
[12] Anabalón, A.; Appels, M.; Gregory, R.; Kubizňák, D.; Mann, R. B.; Ovgün, A., Holographic thermodynamics of accelerating black holes, Phys. Rev. D, 98, Article 104038 pp., 2018
[13] Anabalón, A.; Gray, F.; Gregory, R.; Kubizňák, D.; Mann, R. B., Thermodynamics of charged, rotating, and accelerating black holes, J. High Energy Phys., 04, Article 096 pp., 2019 · Zbl 1415.83009
[14] Golchin, H., Universality of the area product: solutions with conical singularity, Phys. Rev. D, 100, Article 126016 pp., 2019
[15] Golchin, H., More on the entropy product and dual CFTs, J. High Energy Phys., 03, Article 127 pp., 2020 · Zbl 1435.83084
[16] Ferrero, P.; Gauntlett, J. P.; Ipiña, J. M.P.; Martelli, D.; Sparks, J., Accelerating black holes and spinning spindles, Phys. Rev. D, 104, Article 046007 pp., 2021
[17] Ball, A.; Miller, N., Accelerating black hole thermodynamics with boost time, Class. Quantum Gravity, 38, Article 145031 pp., 2021 · Zbl 1480.83069
[18] Ball, A., Global first laws of accelerating black holes, Class. Quantum Gravity, 38, Article 195024 pp., 2021 · Zbl 1482.83072
[19] Cassani, D.; Gauntlett, J. P.; Martelli, D.; Sparks, J., Thermodynamics of accelerating and supersymmetric AdS4 black holes, Phys. Rev. D, 104, Article 086005 pp., 2021
[20] Arenas-Henriquez, G.; Gregory, R.; Scoins, A., On acceleration in three dimensions, J. High Energy Phys., 05, Article 063 pp., 2022 · Zbl 1522.83115
[21] Kim, H.; Kim, N.; Lee, Y.; Poole, A., Thermodynamics of accelerating AdS_4 black holes from the covariant phase space, Eur. Phys. J. C, 83, 1095, 2023
[22] Arenas-Henriquez, G.; Cisterna, A.; Diaz, F.; Gregory, R., Accelerating black holes in \(2 + 1\) dimensions: holography revisited, J. High Energy Phys., 09, Article 122 pp., 2023 · Zbl 07754701
[23] Colombo, E.; Hosseini, S. M.; Martelli, D.; Pittelli, A.; Zaffaroni, A., Microstates of accelerating and supersymmetric AdS_4 black holes from the spindle index
[24] Kinnersley, W.; Walker, M., Uniformly accelerating charged mass in general relativity, Phys. Rev. D, 2, 1359, 1970 · Zbl 1227.83026
[25] Plebanski, J. F.; Demianski, M., Rotating, charged, and uniformly accelerating mass in general relativity, Ann. Phys., 98, 98, 1976 · Zbl 0334.53037
[26] Dias, O. J.C.; Lemos, J. P.S., Pair of accelerated black holes in anti-de Sitter background: AdS C metric, Phys. Rev. D, 67, Article 064001 pp., 2003 · Zbl 1222.83096
[27] Griffiths, J. B.; Podolsky, J., A new look at the Plebanski-Demianski family of solutions, Int. J. Mod. Phys. D, 15, 335, 2006 · Zbl 1101.83012
[28] Griffiths, J. B.; Podolsky, J., Exact Space-Times in Einstein’s General Relativity, Cambridge Monographs on Mathematical Physics, 2009, Cambridge University Press: Cambridge University Press Cambridge · Zbl 1184.83003
[29] Gregory, R.; Hindmarsh, M., Smooth metrics for snapping strings, Phys. Rev. D, 52, 5598, 1995
[30] Dowker, F.; Gauntlett, J. P.; Kastor, D. A.; Traschen, J. H., Pair creation of dilaton black holes, Phys. Rev. D, 49, 2909, 1994
[31] Podolsky, J., Accelerating black holes in anti-de Sitter universe, Czechoslov. J. Phys., 52, 1, 2002
[32] Griffiths, J. B.; Krtous, P.; Podolsky, J., Interpreting the C-metric, Class. Quantum Gravity, 23, 6745, 2006 · Zbl 1111.83009
[33] Ashtekar, A.; Magnon, A., Asymptotically anti-de Sitter space-times, Class. Quantum Gravity, 1, L39, 1984
[34] Magnon, A., On Komar integrals in asymptotically anti-de Sitter space-times, J. Math. Phys., 26, 3112, 1985 · Zbl 0583.53063
[35] Ashtekar, A.; Das, S., Asymptotically Anti-de Sitter space-times: conserved quantities, Class. Quantum Gravity, 17, L17, 2000 · Zbl 0943.83023
[36] Das, S.; Mann, R. B., Conserved quantities in Kerr-anti-de Sitter space-times in various dimensions, J. High Energy Phys., 08, Article 033 pp., 2000 · Zbl 0990.83514
[37] Szabados, L. B., Quasi-local energy-momentum and angular momentum in general relativity, Living Rev. Relativ., 12, 4, 2009 · Zbl 1215.83010
[38] Kim, W.; Kulkarni, S.; Yi, S.-H., Quasilocal conserved charges in a covariant theory of gravity, Phys. Rev. Lett., 111, Article 081101 pp., 2013
[39] Abbott, L. F.; Deser, S., Stability of gravity with a cosmological constant, Nucl. Phys. B, 195, 76, 1982 · Zbl 0900.53033
[40] Abbott, L. F.; Deser, S., Charge definition in nonabelian gauge theories, Phys. Lett. B, 116, 259, 1982
[41] Deser, S.; Tekin, B., Gravitational energy in quadratic curvature gravities, Phys. Rev. Lett., 89, Article 101101 pp., 2002 · Zbl 1267.83086
[42] Deser, S.; Tekin, B., Energy in generic higher curvature gravity theories, Phys. Rev. D, 67, Article 084009 pp., 2003
[43] Senturk, C.; Sisman, T. C.; Tekin, B., Energy and angular momentum in generic F (Riemann) theories, Phys. Rev. D, 86, Article 124030 pp., 2012
[44] Wald, R. M., Black hole entropy is the Noether charge, Phys. Rev. D, 48, Article R3427 pp., 1993 · Zbl 0942.83512
[45] Wald, R. M.; Zoupas, A., A general definition of ‘conserved quantities’ in general relativity and other theories of gravity, Phys. Rev. D, 61, Article 084027 pp., 2000 · Zbl 1136.83317
[46] Hyun, S.; Park, S.-A.; Yi, S.-H., Quasi-local charges and asymptotic symmetry generators, J. High Energy Phys., 06, Article 151 pp., 2014
[47] Hyun, S.; Park, S.-A.; Yi, S.-H., Canonical energy and hairy AdS black holes, Phys. Rev. D, 94, Article 044014 pp., 2016
[48] Komar, A., Covariant conservation laws in general relativity, Phys. Rev., 113, 934, 1959 · Zbl 0086.22103
[49] Iyer, V.; Wald, R. M., Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev. D, 50, 846, 1994
[50] Arnowitt, R. L.; Deser, S.; Misner, C. W., The dynamics of general relativity, Gen. Relativ. Gravit., 40, 1997, 2008 · Zbl 1152.83320
[51] Smarr, L., Mass formula for Kerr black holes, Phys. Rev. Lett., 30, 71, 1973
[52] Kubiznak, D.; Mann, R. B.; Teo, M., Black hole chemistry: thermodynamics with Lambda, Class. Quantum Gravity, 34, Article 063001 pp., 2017 · Zbl 1368.83002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.