×

Gaining insights on anyon condensation and 1-form symmetry breaking across a topological phase transition in a deformed toric code model. (English) Zbl 07906548

Summary: We examine the condensation and confinement mechanisms exhibited by a deformed toric code model proposed in [Castelnovo and Chamon, Phys. Rev. B 77, 054433 (2008)]. The model describes both sides of a phase transition from a topological phase to a trivial phase. Our findings reveal an unconventional confinement mechanism that governs the behavior of the toric code excitations within the trivial phase. Specifically, the confined magnetic charge can still be displaced without any energy cost, albeit only via the application of non-unitary operators that reduce the norm of the state. This peculiar phenomenon can be attributed to a previously known feature of the model: It maintains the non-trivial ground state degeneracy of the toric code throughout the transition. We describe how this degeneracy arises in both phases in terms of spontaneous symmetry breaking of a generalized (1-form) symmetry and explain why such symmetry breaking is compatible with the trivial phase. The present study implies the existence of subtle considerations that must be addressed in the context of recently posited connections between topological phases and broken higher-form symmetries.

MSC:

82Bxx Equilibrium statistical mechanics
81Pxx Foundations, quantum information and its processing, quantum axioms, and philosophy
81Txx Quantum field theory; related classical field theories

References:

[1] X. G. Wen, Vacuum degeneracy of chiral spin states in compactified space, Phys. Rev. B 40, 7387 (1989), doi:10.1103/PhysRevB.40.7387. · doi:10.1103/PhysRevB.40.7387
[2] X. G. Wen, Topological orders in rigid states, Int. J. Mod. Phys. B 04, 239 (1990), doi:10.1142/S0217979290000139. · doi:10.1142/S0217979290000139
[3] X.-G. Wen, Topological order: From long-range entangled quantum matter to a unified origin of light and electrons, ISRN Condens. Matter Phys. 1 (2013), doi:10.1155/2013/198710. · doi:10.1155/2013/198710
[4] D. C. Tsui, H. L. Stormer and A. C. Gossard, Two-dimensional magneto-transport in the extreme quantum limit, Phys. Rev. Lett. 48, 1559 (1982), doi:10.1103/PhysRevLett.48.1559. · doi:10.1103/PhysRevLett.48.1559
[5] X. G. Wen and Q. Niu, Ground-state degeneracy of the fractional quantum Hall states in the presence of a random potential and on high-genus Riemann surfaces, Phys. Rev. B 41, 9377 (1990), doi:10.1103/PhysRevB.41.9377. · doi:10.1103/PhysRevB.41.9377
[6] X.-G. Wen, Topological orders and edge excitations in fractional quantum Hall states, Adv. Phys. 44, 405 (1995), doi:10.1080/00018739500101566. · doi:10.1080/00018739500101566
[7] X. Chen, Z.-C. Gu, Z.-X. Liu and X.-G. Wen, Symmetry protected topological orders and the group cohomology of their symmetry group, Phys. Rev. B 87, 155114 (2013), doi:10.1103/PhysRevB.87.155114. · doi:10.1103/PhysRevB.87.155114
[8] X. Chen, Z.-C. Gu and X.-G. Wen, Local unitary transformation, long-range quantum en-tanglement, wave function renormalization, and topological order, Phys. Rev. B 82, 155138 (2010), doi:10.1103/PhysRevB.82.155138. · doi:10.1103/PhysRevB.82.155138
[9] A. Y. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. 303, 2 (2003), doi:10.1016/S0003-4916(02)00018-0. · Zbl 1012.81006 · doi:10.1016/S0003-4916(02)00018-0
[10] A. Mesaros and Y. Ran, Classification of symmetry enriched topological phases with exactly solvable models, Phys. Rev. B 87, 155115 (2013), doi:10.1103/PhysRevB.87.155115. · doi:10.1103/PhysRevB.87.155115
[11] E. Dennis, A. Kitaev, A. Landahl and J. Preskill, Topological quantum memory, J. Math. Phys. 43, 4452 (2002), doi:10.1063/1.1499754. · Zbl 1060.94045 · doi:10.1063/1.1499754
[12] C. Nayak, S. H. Simon, A. Stern, M. Freedman and S. Das Sarma, Non-Abelian anyons and topological quantum computation, Rev. Mod. Phys. 80, 1083 (2008), doi:10.1103/RevModPhys.80.1083. · Zbl 1205.81062 · doi:10.1103/RevModPhys.80.1083
[13] J. Alicea, Y. Oreg, G. Refael, F. von Oppen and M. P. A. Fisher, Non-Abelian statistics and topological quantum information processing in 1D wire networks, Nat. Phys. 7, 412 (2011), doi:10.1038/nphys1915. · doi:10.1038/nphys1915
[14] B. M. Terhal, Quantum error correction for quantum memories, Rev. Mod. Phys. 87, 307 (2015), doi:10.1103/RevModPhys.87.307. · doi:10.1103/RevModPhys.87.307
[15] B. J. Brown, D. Loss, J. K. Pachos, C. N. Self and J. R. Wootton, Quantum memories at finite temperature, Rev. Mod. Phys. 88, 045005 (2016), doi:10.1103/RevModPhys.88.045005. · doi:10.1103/RevModPhys.88.045005
[16] C. K. Andersen, A. Remm, S. Lazar, S. Krinner, N. Lacroix, G. J. Norris, M. Gabureac, C. Eichler and A. Wallraff, Repeated quantum error detection in a surface code, Nat. Phys. 16, 875 (2020), doi:10.1038/s41567-020-0920-y. · doi:10.1038/s41567-020-0920-y
[17] K. J. Satzinger et al., Realizing topologically ordered states on a quantum processor, Science 374, 1237 (2021), doi:10.1126/science.abi8378. · doi:10.1126/science.abi8378
[18] F. A. Bais and J. K. Slingerland, Condensate-induced transitions between topologically or-dered phases, Phys. Rev. B 79, 045316 (2009), doi:10.1103/PhysRevB.79.045316. · doi:10.1103/PhysRevB.79.045316
[19] F. J. Burnell, Anyon condensation and its applications, Annu. Rev. Condens. Matter Phys. 9, 307 (2018), doi:10.1146/annurev-conmatphys-033117-054154. · doi:10.1146/annurev-conmatphys-033117-054154
[20] T. Neupert, H. He, C. von Keyserlingk, G. Sierra and B. A. Bernevig, Boson con-densation in topologically ordered quantum liquids, Phys. Rev. B 93, 115103 (2016), doi:10.1103/PhysRevB.93.115103. · doi:10.1103/PhysRevB.93.115103
[21] A. F. Bais, B. J. Schroers and J. K. Slingerland, Hopf symmetry breaking and con-finement in (2 + 1)-dimensional gauge theory, J. High Energy Phys. 05, 068 (2003), doi:10.1088/1126-6708/2003/05/068. · doi:10.1088/1126-6708/2003/05/068
[22] I. S. Eliëns, J. C. Romers and F. A. Bais, Diagrammatics for Bose condensation in anyon theories, Phys. Rev. B 90, 195130 (2014), doi:10.1103/PhysRevB.90.195130. · doi:10.1103/PhysRevB.90.195130
[23] Z. Nussinov and G. Ortiz, Sufficient symmetry conditions for topological quantum order, Proc. Natl. Acad. Sci. 106, 16944 (2009), doi:10.1073/pnas.0803726105. · Zbl 1203.81154 · doi:10.1073/pnas.0803726105
[24] Z. Nussinov and G. Ortiz, A symmetry principle for topological quantum order, Ann. Phys. 324, 977 (2009), doi:10.1016/j.aop.2008.11.002. · Zbl 1168.82002 · doi:10.1016/j.aop.2008.11.002
[25] D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, Generalized global symmetries, J. High Energy Phys. 02, 172 (2015), doi:10.1007/JHEP02(2015)172. · Zbl 1388.83656 · doi:10.1007/JHEP02(2015)172
[26] X.-G. Wen, Emergent anomalous higher symmetries from topological order and from dynam-ical electromagnetic field in condensed matter systems, Phys. Rev. B 99, 205139 (2019), doi:10.1103/PhysRevB.99.205139. · doi:10.1103/PhysRevB.99.205139
[27] J. McGreevy, Generalized symmetries in condensed matter, Annu. Rev. Condens. Matter Phys. 14, 57 (2023), doi:10.1146/annurev-conmatphys-040721-021029. · doi:10.1146/annurev-conmatphys-040721-021029
[28] C. Castelnovo and C. Chamon, Quantum topological phase transition at the microscopic level, Phys. Rev. B 77, 054433 (2008), doi:10.1103/PhysRevB.77.054433. · doi:10.1103/PhysRevB.77.054433
[29] J. Haegeman, V. Zauner, N. Schuch and F. Verstraete, Shadows of anyons and the entanglement structure of topological phases, Nat. Commun. 6, 8284 (2015), doi:10.1038/ncomms9284. · doi:10.1038/ncomms9284
[30] M. Mariën, J. Haegeman, P. Fendley and F. Verstraete, Condensation-driven phase transitions in perturbed string nets, Phys. Rev. B 96, 155127 (2017), doi:10.1103/PhysRevB.96.155127. · doi:10.1103/PhysRevB.96.155127
[31] K. Duivenvoorden, M. Iqbal, J. Haegeman, F. Verstraete and N. Schuch, Entanglement phases as holographic duals of anyon condensates, Phys. Rev. B 95, 235119 (2017), doi:10.1103/PhysRevB.95.235119. · doi:10.1103/PhysRevB.95.235119
[32] W.-T. Xu, J. Garre-Rubio and N. Schuch, Complete characterization of non-Abelian topolog-ical phase transitions and detection of anyon splitting with projected entangled pair states, Phys. Rev. B 106, 205139 (2022), doi:10.1103/PhysRevB.106.205139. · doi:10.1103/PhysRevB.106.205139
[33] G. ’t Hooft, On the phase transition towards permanent quark confinement, Nucl. Phys. B 138, 1 (1978), doi:10.1016/0550-3213(78)90153-0. · doi:10.1016/0550-3213(78)90153-0
[34] G.-Y. Zhu and G.-M. Zhang, Gapless Coulomb state emerging from a self-dual topological tensor-network state, Phys. Rev. Lett. 122, 176401 (2019), doi:10.1103/physrevlett.122.176401. · doi:10.1103/physrevlett.122.176401
[35] M. H. Zarei and J. Abouie, Topological line in frustrated toric code models, Phys. Rev. B 104, 115141 (2021), doi:10.1103/PhysRevB.104.115141. · doi:10.1103/PhysRevB.104.115141
[36] E. Samimi, M. H. Zarei and A. Montakhab, Global entanglement in a topological quantum phase transition, Phys. Rev. A 105, 032438 (2022), doi:10.1103/PhysRevA.105.032438. · doi:10.1103/PhysRevA.105.032438
[37] E. Ardonne, P. Fendley and E. Fradkin, Topological order and conformal quantum critical points, Ann. Phys. 310, 493 (2004), doi:10.1016/j.aop.2004.01.004. · Zbl 1052.81089 · doi:10.1016/j.aop.2004.01.004
[38] S. V. Isakov, P. Fendley, A. W. W. Ludwig, S. Trebst and M. Troyer, Dynamics at and near conformal quantum critical points, Phys. Rev. B 83, 125114 (2011), doi:10.1103/PhysRevB.83.125114. · doi:10.1103/PhysRevB.83.125114
[39] N. Matsumoto, K. Kawabata, Y. Ashida, S. Furukawa and M. Ueda, Continuous phase transition without gap closing in non-Hermitian quantum many-body systems, Phys. Rev. Lett. 125, 260601 (2020), doi:10.1103/PhysRevLett.125.260601. · doi:10.1103/PhysRevLett.125.260601
[40] H. Bombin and M. A. Martin-Delgado, Family of non-Abelian Kitaev models on a lat-tice: Topological condensation and confinement, Phys. Rev. B 78, 115421 (2008), doi:10.1103/PhysRevB.78.115421. · doi:10.1103/PhysRevB.78.115421
[41] M. B. Hastings and X.-G. Wen, Quasiadiabatic continuation of quantum states: The stability of topological ground-state degeneracy and emergent gauge invariance, Phys. Rev. B 72, 045141 (2005), doi:10.1103/PhysRevB.72.045141. · doi:10.1103/PhysRevB.72.045141
[42] P. Bonderson and C. Nayak, Quasi-topological phases of matter and topological protection, Phys. Rev. B 87, 195451 (2013), doi:10.1103/PhysRevB.87.195451. · doi:10.1103/PhysRevB.87.195451
[43] S. D. Pace and X.-G. Wen, Exact emergent higher-form symmetries in bosonic lattice models, Phys. Rev. B 108, 195147 (2023), doi:10.1103/PhysRevB.108.195147. · doi:10.1103/PhysRevB.108.195147
[44] M. H. Zarei and M. Nobakht, Foliated order parameter in a fracton phase transition, Phys. Rev. B 106, 035101 (2022), doi:10.1103/PhysRevB.106.035101. · doi:10.1103/PhysRevB.106.035101
[45] G.-Y. Zhu, J.-Y. Chen, P. Ye and S. Trebst, Topological fracton quantum phase tran-sitions by tuning exact tensor network states, Phys. Rev. Lett. 130, 216704 (2023), doi:10.1103/PhysRevLett.130.216704. · doi:10.1103/PhysRevLett.130.216704
[46] J. I. Cirac, D. Poilblanc, N. Schuch and F. Verstraete, Entanglement spectrum and boundary theories with projected entangled-pair states, Phys. Rev. B 83, 245134 (2011), doi:10.1103/PhysRevB.83.245134. · doi:10.1103/PhysRevB.83.245134
[47] M. H. Zarei, Ising order parameter and topological phase transitions: Toric code in a uniform magnetic field, Phys. Rev. B 100, 125159 (2019), doi:10.1103/PhysRevB.100.125159. · doi:10.1103/PhysRevB.100.125159
[48] R. Peierls, On Ising’s model of ferromagnetism, Math. Proc. Camb. Phil. Soc. 32, 477 (1936), doi:10.1017/S0305004100019174. · Zbl 0014.33604 · doi:10.1017/S0305004100019174
[49] C. N. Yang, The spontaneous magnetization of a two-dimensional Ising model, Phys. Rev. 85, 808 (1952), doi:10.1103/PhysRev.85.808. · Zbl 0046.45304 · doi:10.1103/PhysRev.85.808
[50] B. Kastening, Simplified transfer matrix approach in the two-dimensional Ising model with various boundary conditions, Phys. Rev. E 66, 057103 (2002), doi:10.1103/PhysRevE.66.057103. · doi:10.1103/PhysRevE.66.057103
[51] M.-C. Wu and C.-K. Hu, Exact partition functions of the Ising model on M × N planar lattices with periodic-aperiodic boundary conditions, J. Phys. A: Math. Gen. 35, 5189 (2002), doi:10.1088/0305-4470/35/25/304. · Zbl 1043.82007 · doi:10.1088/0305-4470/35/25/304
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.