×

Spectral solutions of specific singular differential equations using a unified spectral Galerkin-collocation algorithm. (English) Zbl 07906466

Summary: This paper presents a novel numerical approach to addressing three types of high-order singular boundary value problems. We introduce and consider three modified Chebyshev polynomials (CPs) of the third kind as proposed basis functions for these problems. We develop new derivative operational matrices for the three modified CPs of the third kind by deriving formulas for their first derivatives. Our approach follows a unified method for numerically handling singular differential equations (DEs). To transform these equations into algebraic systems suitable for numerical treatment, we employ the collocation method in combination with the introduced operational matrices of derivatives of the modified CPs of the third kind. We address the convergence examination for the three expansions in a unified manner. We present numerous numerical examples to demonstrate the accuracy and efficiency of our unified numerical approach.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs

Software:

Matlab

References:

[1] Agarwal, R.P.: Boundary Value problems From Higher Order Differential Equations. World Scientific, (1986) · Zbl 0619.34019
[2] Abd-Elhameed, WM; Alkenedri, AM, Spectral solutions of linear and nonlinear BVPs using certain Jacobi polynomials generalizing third-and fourth-kinds of Chebyshev polynomials, CMES Comput. Model. Eng. Sci., 126, 3, 955-989, 2021
[3] Doha, EH; Abd-Elhameed, WM; Bhrawy, AH, New spectral-Galerkin algorithms for direct solution of high even-order differential equations using symmetric generalized Jacobi polynomials, Collect. Math., 64, 3, 373-394, 2013 · Zbl 1281.65108 · doi:10.1007/s13348-012-0067-y
[4] Abdelhakem, M.; Fawzy, M.; El-Kady, M.; Moussa, H., An efficient technique for approximated BVPs via the second derivative Legendre polynomials pseudo-Galerkin method: Certain types of applications, Results Phys., 43, 2022 · doi:10.1016/j.rinp.2022.106067
[5] Verma, AK; Pandit, B.; Verma, L.; Agarwal, RP, A review on a class of second order nonlinear singular BVPs, Mathematics, 8, 7, 1045, 2020 · doi:10.3390/math8071045
[6] Rezapour, S.; Tellab, B.; Deressa, CT; Etemad, S.; Nonlaopon, K., Hu-type stability and numerical solutions for a nonlinear model of the coupled systems of Navier BVPs via the generalized differential transform method, Fractal Fract., 5, 4, 166, 2021 · doi:10.3390/fractalfract5040166
[7] Abdelhakem, M.; Alaa-Eldeen, T.; Baleanu, D.; Alshehri, MG; El-Kady, M., Approximating real-life BVPs via Chebyshev polynomials’ first derivative pseudo-Galerkin method, Fractal Fract., 5, 4, 165, 2021 · doi:10.3390/fractalfract5040165
[8] Qiu, Wenlin; Da, Xu; Zhou, Jun; Guo, Jing, An efficient sinc-collocation method via the de transformation for eighth-order boundary value problems, J. Comput. Appl. Math., 408, 2022 · Zbl 1484.65152 · doi:10.1016/j.cam.2022.114136
[9] Ali, F.; Ali, J.; Uddin, I., A novel approach for the solution of BVPs via Green’ function and fixed point iterative method, J. Appl. Math. Comput., 66, 167-181, 2021 · Zbl 1510.47108 · doi:10.1007/s12190-020-01431-7
[10] Nikooeinejad, Z.; Heydari, M.; Loghmani, GB, A numerical iterative method for solving two-point BVPs in infinite-horizon nonzero-sum differential games: Economic applications, Math. Comput. Simul., 200, 404-427, 2022 · Zbl 1540.91006 · doi:10.1016/j.matcom.2022.04.022
[11] Khalid, A.; Ghaffar, A.; Naeem, MN; Nisar, KS; Baleanu, D., Solutions of BVPs arising in hydrodynamic and magnetohydro-dynamic stability theory using polynomial and non-polynomial splines, Alex. Eng. J., 60, 1, 941-953, 2021 · doi:10.1016/j.aej.2020.10.022
[12] Doha, EH; Abd-Elhameed, WM; Ahmed, HM, The coefficients of differentiated expansions of double and triple Jacobi polynomials, Bull. Iranian Math. Soc., 38, 3, 739-765, 2012 · Zbl 1302.42042
[13] Alsuyuti, MM; Doha, EH; Ezz-Eldien, SS, Galerkin operational approach for multi-dimensions fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 114, 2022 · Zbl 1538.65409 · doi:10.1016/j.cnsns.2022.106608
[14] Kumar, S.; Nieto, JJ; Ahmad, B., Chebyshev spectral method for solving fuzzy fractional Fredholm-Volterra integro-differential equation, Math. Comput. Simul., 192, 501-513, 2022 · Zbl 1530.65186 · doi:10.1016/j.matcom.2021.09.017
[15] Ji, T.; Hou, J.; Yang, C., The operational matrix of Chebyshev polynomials for solving pantograph-type Volterra integro-differential equations, Adv. Continuous Discrete Models, 2022, 1, 1-16, 2022 · Zbl 1535.65312 · doi:10.1186/s13662-022-03729-1
[16] Boyd, J.P.: Chebyshev and Fourier Spectral Methods. Courier Corporation, (2001) · Zbl 0994.65128
[17] Trefethen, L.N.: Spectral Methods in MATLAB, volume 10. SIAM, (2000) · Zbl 0953.68643
[18] Hesthaven, J., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-Dependent Problems, volume 21. Cambridge University Press, (2007) · Zbl 1111.65093
[19] Abd-Elhameed, WM; Alsuyuti, MM, Numerical treatment of multi-term fractional differential equations via new kind of generalized Chebyshev polynomials, Fractal Fract., 7, 1, 74, 2023 · doi:10.3390/fractalfract7010074
[20] Hafez, RM; Zaky, MA, High-order continuous Galerkin methods for multi-dimensional advection-reaction-diffusion problems, Eng. Comput., 36, 4, 1813-1829, 2020 · doi:10.1007/s00366-019-00797-y
[21] Abdelhamied, D.; Abdelhakem, M.; El-Kady, M.; Youssri, YH, Modified shifted Chebyshev residual spectral scheme for even-order BVPs, Math. Sci. Lett., 12, 1, 14-18, 2023
[22] Moghadam, AA; Soheili, AR; Bagherzadeh, AS, Numerical solution of fourth-order BVps by using Lidstone-collocation method, Appl. Math. Comput., 425, 2022 · Zbl 1510.65304
[23] Mohebbi, A., Crank- Nicolson and Legendre spectral collocation methods for a partial integro-differential equation with a singular kernel, J. Comput. Appl. Math., 349, 197-206, 2019 · Zbl 1408.65074 · doi:10.1016/j.cam.2018.09.034
[24] Khader, M.M., Eid, A., Adel, M.: Implementing the Vieta-Lucas collocation optimization method for MHD Casson and Williamson model under the effects of heat generation and viscous dissipation. J. Math., 2022, (2022)
[25] Abd-Elhameed, WM, Novel formulae of certain generalized Jacobi polynomials, Mathematics, 10, 22, 4237, 2022 · doi:10.3390/math10224237
[26] Abd-Elhameed, WM; Ahmed, HM, Tau and Galerkin operational matrices of derivatives for treating singular and Emden-Fowler third-order-type equations, Int. J. Mod. Phys. C, 33, 5, 2250061-17, 2022 · doi:10.1142/S0129183122500619
[27] Abd-Elhameed, WM; Al-Harbi, MS; Amin, AK; Ahmed, HM, Spectral treatment of high-order Emden-Fowler equations based on modified Chebyshev polynomials, Axioms, 12, 2, 99, 2023 · doi:10.3390/axioms12020099
[28] Saadatmandi, A.; Dehghan, M., A new operational matrix for solving fractional-order differential equations, Comput. Math. Appl., 59, 3, 1326-1336, 2010 · Zbl 1189.65151 · doi:10.1016/j.camwa.2009.07.006
[29] Doha, EH; Abd-Elhameed, WM; Bassuony, MA, On using third and fourth kinds Chebyshev operational matrices for solving Lane-Emden type equations, Rom. J. Phys., 60, 3-4, 281-292, 2015
[30] Aruna, K.; Ravi Kanth, ASV, A novel approach for a class of higher order nonlinear singular boundary value problems, Inter. J. Pure Apll. Math., 84, 4, 321-329, 2013
[31] Hasan, YQ; Zhu, LM, Solving singular boundary value problems of higher-order ordinary differential equations by modified Adomian decomposition method, Commun. Nonlinear Sci. Numer. Simul., 14, 6, 2592-2596, 2009 · Zbl 1221.65203 · doi:10.1016/j.cnsns.2008.09.027
[32] Iqbal, MK; Abbas, M.; Zafar, B., New quartic B-spline approximations for numerical solution of fourth order singular boundary value problems, J. Math., 52, 3, 47-63, 2020
[33] Stewart, J.: Single variable essential calculus: early transcendentals. Cengage Learning, (2012)
[34] Mishra, HK; Saini, S., Quartic B- spline method for solving a singular singularly perturbed third-order boundary value problems, Am. J. Numer. Anal., 3, 1, 18-24, 2015
[35] Iqbal, MK; Abbas, M.; Wasim, I., New cubic B-spline approximation for solving third order Emden- Flower type equations, Appl. Math. Comput., 331, 319-333, 2018 · Zbl 1427.65131
[36] Kim, W.; Chun, C., A modified Adomian decomposition method for solving higher-order singular boundary value problems, Z. Naturforsch., 65, 12, 1093-1100, 2010 · doi:10.1515/zna-2010-1213
[37] Taiwo, O.A., Hassan, M.O.: Approximation of higher-order singular initial and boundary value problems by iterative decomposition and Bernstein polynomial methods. J. Adv. Math. Comput. Sci., pages 498-515, (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.