×

High-fidelity realization of the AKLT state on a NISQ-era quantum processor. (English) Zbl 07906179

Summary: The AKLT state is the ground state of an isotropic quantum Heisenberg spin-1 model. It exhibits an excitation gap and an exponentially decaying correlation function, with fractionalized excitations at its boundaries. So far, the one-dimensional AKLT model has only been experimentally realized with trapped-ions as well as photonic systems. In this work, we successfully prepared the AKLT state on a noisy intermediate-scale quantum (NISQ) era quantum device. In particular, we developed a non-deterministic algorithm on the IBM quantum processor, where the non-unitary operator necessary for the AKLT state preparation is embedded in a unitary operator with an additional ancilla qubit for each pair of auxiliary spin-1/2’s. Such a unitary operator is effectively represented by a parametrized circuit composed of single-qubit and nearest-neighbor CX gates. Compared with the conventional operator decomposition method from Qiskit, our approach results in a much shallower circuit depth with only nearest-neighbor gates, while maintaining a fidelity in excess of 99.99% with the original operator. By simultaneously post-selecting each ancilla qubit such that it belongs to the subspace of spin-up \(|\uparrow\rangle\), an AKLT state can be systematically obtained by evolving from an initial trivial product state of singlets plus ancilla qubits in spin-up on a quantum computer, and it is subsequently recorded by performing measurements on all the other physical qubits. We show how the accuracy of our implementation can be further improved on the IBM quantum processor with readout error mitigation.

MSC:

81Pxx Foundations, quantum information and its processing, quantum axioms, and philosophy
81Vxx Applications of quantum theory to specific physical systems
81-XX Quantum theory

References:

[1] P. W. Anderson, More is different, Science 177, 393 (1972), doi:10.1126/science.177.4047.393. · doi:10.1126/science.177.4047.393
[2] I. Bloch, J. Dalibard and W. Zwerger, Man-body physics with ultracold gases, Rev. Mod. Phys. 80, 885 (2008), doi:10.1103/RevModPhys.80.885. · doi:10.1103/RevModPhys.80.885
[3] M. Schreiber, S. S. Hodgman, P. Bordia, H. P. Lüschen, M. H. Fischer, R. Vosk, E. Altman, U. Schneider and I. Bloch, Observation of many-body localization of interacting fermions in a quasirandom optical lattice, Science 349, 842 (2015), doi:10.1126/science.aaa7432. · Zbl 1355.81179 · doi:10.1126/science.aaa7432
[4] J.-y. Choi et al., Exploring the many-body localization transition in two dimensions, Sci-ence 352, 1547 (2016), doi:10.1126/science.aaf8834. · Zbl 1355.81164 · doi:10.1126/science.aaf8834
[5] P. Bordia, H. Lüschen, S. Scherg, S. Gopalakrishnan, M. Knap, U. Schneider and I. Bloch, Probing slow relaxation and many-body localization in two-dimensional quasiperiodic sys-tems, Phys. Rev. X 7, 041047 (2017), doi:10.1103/PhysRevX.7.041047. · doi:10.1103/PhysRevX.7.041047
[6] N. R. Cooper, J. Dalibard and I. B. Spielman, Topological bands for ultracold atoms, Rev. Mod. Phys. 91, 015005 (2019), doi:10.1103/RevModPhys.91.015005. · doi:10.1103/RevModPhys.91.015005
[7] J. Preskill, Quantum computing in the NISQ era and beyond, Quantum 2, 79 (2018), doi:10.22331/q-2018-08-06-79. · doi:10.22331/q-2018-08-06-79
[8] F. Arute et al., Quantum supremacy using a programmable superconducting processor, Nature 574, 505 (2019), doi:10.1038/s41586-019-1666-5. · doi:10.1038/s41586-019-1666-5
[9] H.-S. Zhong et al., Quantum computational advantage using photons, Science 370, 1460 (2020), doi:10.1126/science.abe8770. · doi:10.1126/science.abe8770
[10] X. Mi et al., Time-crystalline eigenstate order on a quantum processor, Nature 601, 531 (2021), doi:10.1038/s41586-021-04257-w. · doi:10.1038/s41586-021-04257-w
[11] P. Frey and S. Rachel, Realization of a discrete time crystal on 57 qubits of a quantum computer, Sci. Adv. 8, 7652 (2022), doi:10.1126/sciadv.abm7652. · doi:10.1126/sciadv.abm7652
[12] F. Arute et al., Hartree-Fock on a superconducting qubit quantum computer, Science 369, 1084 (2020), doi:10.1126/science.abb9811. · Zbl 1478.81010 · doi:10.1126/science.abb9811
[13] A. Rahmani, K. J. Sung, H. Putterman, P. Roushan, P. Ghaemi and Z. Jiang, Cre-ating and manipulating a Laughlin-type ν = 1/3 fractional quantum Hall state on a quantum computer with linear depth circuits, PRX Quantum 1, 020309 (2020), doi:10.1103/PRXQuantum.1.020309. · doi:10.1103/PRXQuantum.1.020309
[14] A. Kirmani, K. Bull, C.-Y. Hou, V. Saravanan, S. M. Saeed, Z. Papić, A. Rahmani and P. Ghaemi, Probing geometric excitations of fractional quantum Hall states on quantum computers, Phys. Rev. Lett. 129, 056801 (2022), doi:10.1103/PhysRevLett.129.056801. · doi:10.1103/PhysRevLett.129.056801
[15] A. Cervera-Lierta, Exact Ising model simulation on a quantum computer, Quantum 2, 114 (2018), doi:10.22331/q-2018-12-21-114. · doi:10.22331/q-2018-12-21-114
[16] A. Smith, M. S. Kim, F. Pollmann and J. Knolle, Simulating quantum many-body dy-namics on a current digital quantum computer, npj Quantum Inf. 5, 106 (2019), doi:10.1038/s41534-019-0217-0. · doi:10.1038/s41534-019-0217-0
[17] J. M. Koh, T. Tai, Y. H. Phee, W. E. Ng and C. H. Lee, Stabilizing multiple topological fermions on a quantum computer, npj Quantum Inf. 8, 16 (2022), doi:10.1038/s41534-022-00527-1. · doi:10.1038/s41534-022-00527-1
[18] J. M. Koh, T. Tai and C. H. Lee, Simulation of interaction-induced chiral topologi-cal dynamics on a digital quantum computer, Phys. Rev. Lett. 129, 140502 (2022), doi:10.1103/PhysRevLett.129.140502. · doi:10.1103/PhysRevLett.129.140502
[19] D. Zhu, S. Johri, N. H. Nguyen, C. H. Alderete, K. A. Landsman, N. M. Linke, C. Monroe and A. Y. Matsuura, Probing many-body localization on a noisy quantum computer, Phys. Rev. A 103, 032606 (2021), doi:10.1103/PhysRevA.103.032606. · doi:10.1103/PhysRevA.103.032606
[20] D. Paulson et al., Simulating 2D effects in lattice gauge theories on a quantum computer, PRX Quantum 2, 030334 (2021), doi:10.1103/PRXQuantum.2.030334. · doi:10.1103/PRXQuantum.2.030334
[21] G. Semeghini et al., Probing topological spin liquids on a programmable quantum simu-lator, Science 374, 1242 (2021), doi:10.1126/science.abi8794. · doi:10.1126/science.abi8794
[22] W. Kohn, Nobel lecture: Electronic structure of matter-wave functions and density func-tionals, Rev. Mod. Phys. 71, 1253 (1999), doi:10.1103/RevModPhys.71.1253. · doi:10.1103/RevModPhys.71.1253
[23] M. Troyer and U.-J. Wiese, Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations, Phys. Rev. Lett. 94, 170201 (2005), doi:10.1103/PhysRevLett.94.170201. · doi:10.1103/PhysRevLett.94.170201
[24] R. Orús, Tensor networks for complex quantum systems, Nat. Rev. Phys. 1, 538 (2019), doi:10.1038/s42254-019-0086-7. · doi:10.1038/s42254-019-0086-7
[25] J. I. Cirac, D. Pérez-García, N. Schuch and F. Verstraete, Matrix product states and pro-jected entangled pair states: Concepts, symmetries, theorems, Rev. Mod. Phys. 93, 045003 (2021), doi:10.1103/RevModPhys.93.045003. · doi:10.1103/RevModPhys.93.045003
[26] S. Johnstun and J.-F. Van Huele, Understanding and compensating for noise on IBM quan-tum computers, Am. J. Phys 89, 935 (2021), doi:10.1119/10.0006204. · doi:10.1119/10.0006204
[27] S.-J. Ran, Encoding of matrix product states into quantum circuits of one-and two-qubit gates, Phys. Rev. A 101, 032310 (2020), doi:10.1103/PhysRevA.101.032310. · doi:10.1103/PhysRevA.101.032310
[28] A. Holmes and A. Y. Matsuura, Efficient quantum circuits for accurate state prepa-ration of smooth, differentiable functions, in 2020 IEEE international conference on quantum computing and engineering, Denver, USA, ISBN 9781728189697 (2020), doi:10.1109/QCE49297.2020.00030. · doi:10.1109/QCE49297.2020.00030
[29] S.-H. Lin, R. Dilip, A. G. Green, A. Smith and F. Pollmann, Real-and imaginary-time evolution with compressed quantum circuits, PRX Quantum 2, 010342 (2021), doi:10.1103/PRXQuantum.2.010342. · doi:10.1103/PRXQuantum.2.010342
[30] M. Nakamura, Z.-Y. Wang and E. J. Bergholtz, Exactly solvable fermion chain describ-ing a ν = 1/3 fractional quantum Hall state, Phys. Rev. Lett. 109, 016401 (2012), doi:10.1103/PhysRevLett.109.016401. · doi:10.1103/PhysRevLett.109.016401
[31] A. W. Schlimgen, K. Head-Marsden, L. M. Sager-Smith, P. Narang and D. A. Mazziotti, Quantum state preparation and nonunitary evolution with diagonal operators, Phys. Rev. A 106, 022414 (2022), doi:10.1103/PhysRevA.106.022414. · doi:10.1103/PhysRevA.106.022414
[32] S. McArdle, T. Jones, S. Endo, Y. Li, S. C. Benjamin and X. Yuan, Variational Ansatz-based quantum simulation of imaginary time evolution, npj Quantum Inf. 5, 75 (2019), doi:10.1038/s41534-019-0187-2. · doi:10.1038/s41534-019-0187-2
[33] M. Motta, C. Sun, A. T. K. Tan, M. J. O’Rourke, E. Ye, A. J. Minnich, F. G. S. L. Brandão and G. K.-L. Chan, Determining eigenstates and thermal states on a quantum computer us-ing quantum imaginary time evolution, Nat. Phys. 16, 205 (2019), doi:10.1038/s41567-019-0704-4. · doi:10.1038/s41567-019-0704-4
[34] Y. Mao, M. Chaudhary, M. Kondappan, J. Shi, E. O. Ilo-Okeke, V. Ivannikov and T. Byrnes, Measurement-based deterministic imaginary time evolution, Phys. Rev. Lett. 131, 110602 (2023), doi:10.1103/physrevlett.131.110602. · doi:10.1103/physrevlett.131.110602
[35] M. Kondappan, M. Chaudhary, E. O. Ilo-Okeke, V. Ivannikov and T. Byrnes, Imaginary-time evolution with quantum nondemolition measurements: Multiqubit interactions via measurement nonlinearities, Phys. Rev. A 107, 042616 (2023), doi:10.1103/PhysRevA.107.042616. · doi:10.1103/PhysRevA.107.042616
[36] I. Affleck, T. Kennedy, E. H. Lieb and H. Tasaki, Rigorous results on valence-bond ground states in antiferromagnets, Phys. Rev. Lett. 59, 799 (1987), doi:10.1103/PhysRevLett.59.799. · doi:10.1103/PhysRevLett.59.799
[37] I. Affleck, T. Kennedy, E. H. Lieb and H. Tasaki, Valence bond ground states in isotropic quantum antiferromagnets, Commun. Math. Phys. 115, 477 (1988), doi:10.1007/BF01218021. · doi:10.1007/BF01218021
[38] I. Affleck, Quantum spin chains and the Haldane gap, J. Phys.: Condens. Matter 1, 3047 (1989), doi:10.1088/0953-8984/1/19/001. · doi:10.1088/0953-8984/1/19/001
[39] T. Kennedy, Exact diagonalisations of open spin-1 chains, J. Phys.: Condens. Matter 2, 5737 (1990), doi:10.1088/0953-8984/2/26/010. · doi:10.1088/0953-8984/2/26/010
[40] S. R. White and D. A. Huse, Numerical renormalization-group study of low-lying eigen-states of the antiferromagnetic S = 1 Heisenberg chain, Phys. Rev. B 48, 3844 (1993), doi:10.1103/PhysRevB.48.3844. · doi:10.1103/PhysRevB.48.3844
[41] A. T. K. Tan, S.-N. Sun, R. N. Tazhigulov, G. K.-L. Chan and A. J. Minnich, Re-alizing symmetry-protected topological phases in a spin-1/2 chain with next-nearest neighbor hopping on superconducting qubits, Phys. Rev. A 107, 032614 (2023), doi:10.1103/PhysRevA.107.032614. · doi:10.1103/PhysRevA.107.032614
[42] F. Mei, Q. Guo, Y.-F. Yu, L. Xiao, S.-L. Zhu and S. Jia, Digital simulation of topologi-cal matter on programmable quantum processors, Phys. Rev. Lett. 125, 160503 (2020), doi:10.1103/PhysRevLett.125.160503. · doi:10.1103/PhysRevLett.125.160503
[43] D. Azses, R. Haenel, Y. Naveh, R. Raussendorf, E. Sela and E. G. Dalla Torre, Identifi-cation of symmetry-protected topological states on noisy quantum computers, Phys. Rev. Lett. 125, 120502 (2020), doi:10.1103/PhysRevLett.125.120502. · doi:10.1103/PhysRevLett.125.120502
[44] A. Smith, B. Jobst, A. G. Green and F. Pollmann, Crossing a topological phase transition with a quantum computer, Phys. Rev. Res. 4, L022020 (2022), doi:10.1103/PhysRevResearch. · doi:10.1103/PhysRevResearch.4.L022020
[45] L022020. · doi:10.1103/PhysRevResearch.4.L022020
[46] K. Choo, C. W. von Keyserlingk, N. Regnault and T. Neupert, Measurement of the en-tanglement spectrum of a symmetry-protected topological state using the IBM quantum computer, Phys. Rev. Lett. 121, 086808 (2018), doi:10.1103/PhysRevLett.121.086808. · doi:10.1103/PhysRevLett.121.086808
[47] E. Altman et al., Quantum simulators: Architectures and opportunities, PRX Quantum 2, 017003 (2021), doi:10.1103/PRXQuantum.2.017003. · doi:10.1103/PRXQuantum.2.017003
[48] T.-C. Wei, I. Affleck and R. Raussendorf, Affleck-Kennedy-Lieb-Tasaki state on a honey-comb lattice is a universal quantum computational resource, Phys. Rev. Lett. 106, 070501 (2011), doi:10.1103/PhysRevLett.106.070501. · doi:10.1103/PhysRevLett.106.070501
[49] A. Miyake, Quantum computational capability of a 2D valence bond solid phase, Ann. Phys. 326, 1656 (2011), doi:10.1016/j.aop.2011.03.006. · Zbl 1219.81077 · doi:10.1016/j.aop.2011.03.006
[50] R. Raussendorf and H. J. Briegel, A one-way quantum computer, Phys. Rev. Lett. 86, 5188 (2001), doi:10.1103/PhysRevLett.86.5188. · Zbl 1152.81803 · doi:10.1103/PhysRevLett.86.5188
[51] H. J. Briegel, D. E. Browne, W. Dür, R. Raussendorf and M. Van den Nest, Measurement-based quantum computation, Nat. Phys. 5, 19 (2009), doi:10.1038/nphys1157. · doi:10.1038/nphys1157
[52] T.-C. Wei, R. Raussendorf and I. Affleck, Some aspects of Affleck-Kennedy-Lieb-Tasaki models: Tensor network, physical properties, spectral gap, deformation, and quantum computation, in Quantum science and technology, Springer, Cham, Switzerland, ISBN 9783031039973 (2022), doi:10.1007/978-3-031-03998-0_5. · doi:10.1007/978-3-031-03998-0_5
[53] R. Kaltenbaek, J. Lavoie, B. Zeng, S. D. Bartlett and K. J. Resch, Optical one-way quantum computing with a simulated valence-bond solid, Nat. Phys. 6, 850 (2010), doi:10.1038/nphys1777. · doi:10.1038/nphys1777
[54] D. E. Browne and T. Rudolph, Resource-efficient linear quantum computation, Phys. Rev. Lett. 95, 010501 (2005), doi:10.1103/PhysRevLett.95.010501. · doi:10.1103/PhysRevLett.95.010501
[55] C. Senko, P. Richerme, J. Smith, A. Lee, I. Cohen, A. Retzker and C. Monroe, Realization of a quantum integer-spin chain with controllable interactions, Phys. Rev. X 5, 021026 (2015), doi:10.1103/PhysRevX.5.021026. · doi:10.1103/PhysRevX.5.021026
[56] K. C. Smith, E. Crane, N. Wiebe and S. M. Girvin, Deterministic constant-depth prepara-tion of the AKLT state on a quantum processor using fusion measurements, PRX Quantum 4, 020315 (2023), doi:10.1103/PRXQuantum.4.020315. · doi:10.1103/PRXQuantum.4.020315
[57] B. Murta, P. M. Q. Cruz and J. Fernández-Rossier, Preparing valence-bond-solid states on noisy intermediate-scale quantum computers, Phys. Rev. Res. 5, 013190 (2023), doi:10.1103/PhysRevResearch.5.013190. · doi:10.1103/PhysRevResearch.5.013190
[58] Z.-Y. Wei, D. Malz and J. I. Cirac, Efficient adiabatic preparation of tensor network states, Phys. Rev. Res. 5, L022037 (2023), doi:10.1103/PhysRevResearch.5.L022037. · doi:10.1103/PhysRevResearch.5.L022037
[59] J. Kim, M. Kim, N. Kawashima, J. H. Han and H.-Y. Lee, Construction of variational matrix product states for the Heisenberg spin-1 chain, Phys. Rev. B 102, 085117 (2020), doi:10.1103/PhysRevB.102.085117. · doi:10.1103/PhysRevB.102.085117
[60] J. Gray, quimb: A Python package for quantum information and many-body calculations, J. Open Source Softw. 3, 819 (2018), doi:10.21105/joss.00819. · doi:10.21105/joss.00819
[61] K. Heya, Y. Suzuki, Y. Nakamura and K. Fujii, Variational quantum gate optimization, (arXiv preprint) doi:10.48550/arXiv.1810.12745. · doi:10.48550/arXiv.1810.12745
[62] S. Khatri, R. LaRose, A. Poremba, L. Cincio, A. T. Sornborger and P. J. Coles, Quantum-assisted quantum compiling, Quantum 3, 140 (2019), doi:10.22331/q-2019-05-13-140. · doi:10.22331/q-2019-05-13-140
[63] S.-N. Sun, M. Motta, R. N. Tazhigulov, A. T. K. Tan, G. K.-L. Chan and A. J. Min-nich, Quantum computation of finite-temperature static and dynamical properties of spin systems using quantum imaginary time evolution, PRX Quantum 2, 010317 (2021), doi:10.1103/PRXQuantum.2.010317. · doi:10.1103/PRXQuantum.2.010317
[64] F. Barratt, J. Dborin, M. Bal, V. Stojevic, F. Pollmann and A. G. Green, Parallel quantum simulation of large systems on small NISQ computers, npj Quantum Inf. 7, 79 (2021), doi:10.1038/s41534-021-00420-3. · doi:10.1038/s41534-021-00420-3
[65] J. Dborin, V. Wimalaweera, F. Barratt, E. Ostby, T. E. O’Brien and A. G. Green, Simulating groundstate and dynamical quantum phase transitions on a superconducting quantum computer, Nat. Commun. 13, 5977 (2022), doi:10.1038/s41467-022-33737-4. · doi:10.1038/s41467-022-33737-4
[66] Qiskit contributors, Qiskit: An open-source framework for quantum computing, Zenodo (2023), doi:10.5281/zenodo.2573505. · doi:10.5281/zenodo.2573505
[67] IBM quantum lab, https://quantum-computing.ibm.com/lab/docs/iql/manage/ systems/midcircuit-measurement/.
[68] U. Schollwöck, The density-matrix renormalization group in the age of matrix product states, Ann. Phys. 326, 96 (2011), doi:10.1016/j.aop.2010.09.012. · Zbl 1213.81178 · doi:10.1016/j.aop.2010.09.012
[69] H. Tasaki, Physics and mathematics of quantum many-body systems, Springer, Cham, Switzerland, ISBN 9783030412647 (2020), doi:10.1007/978-3-030-41265-4. · Zbl 1451.81004 · doi:10.1007/978-3-030-41265-4
[70] S. Moudgalya, N. Regnault and B. A. Bernevig, Entanglement of exact excited states of Affleck-Kennedy-Lieb-Tasaki models: Exact results, many-body scars, and violation of the strong eigenstate thermalization hypothesis, Phys. Rev. B 98, 235156 (2018), doi:10.1103/PhysRevB.98.235156. · doi:10.1103/PhysRevB.98.235156
[71] H. Terashima and M. Ueda, Nonunitary quantum circuit, Int. J. Quantum Inf. 03, 633 (2005), doi:10.1142/S0219749905001456. · Zbl 1090.81020 · doi:10.1142/S0219749905001456
[72] N. Okuma and Y. O. Nakagawa, Nonnormal Hamiltonian dynamics in quantum sys-tems and its realization on quantum computers, Phys. Rev. B 105, 054304 (2022), doi:10.1103/PhysRevB.105.054304. · doi:10.1103/PhysRevB.105.054304
[73] H.-J. Mikeska and A. K. Kolezhuk, One-dimensional magnetism, in Quantum mag-netism, Springer, Berlin, Heidelberg, Germany, ISBN 9783540214229 (2004), doi:10.1007/BFb0119591. · doi:10.1007/BFb0119591
[74] T. Kim and B.-S. Choi, Efficient decomposition methods for controlled-R n using a single ancillary qubit, Sci. Rep. 8, 5445 (2018), doi:10.1038/s41598-018-23764-x. · doi:10.1038/s41598-018-23764-x
[75] M. Beverland, V. Kliuchnikov and E. Schoute, Surface code compilation via edge-disjoint paths, PRX Quantum 3, 020342 (2022), doi:10.1103/PRXQuantum.3.020342. · doi:10.1103/PRXQuantum.3.020342
[76] R. Iten, R. Colbeck, I. Kukuljan, J. Home and M. Christandl, Quantum circuits for isome-tries, Phys. Rev. A 93, 032318 (2016), doi:10.1103/PhysRevA.93.032318. · doi:10.1103/PhysRevA.93.032318
[77] M. Cerezo et al., Variational quantum algorithms, Nat. Rev. Phys. 3, 625 (2021), doi:10.1038/s42254-021-00348-9. · doi:10.1038/s42254-021-00348-9
[78] L. Bittel and M. Kliesch, Training variational quantum algorithms is NP-hard, Phys. Rev. Lett. 127, 120502 (2021), doi:10.1103/PhysRevLett.127.120502. · doi:10.1103/PhysRevLett.127.120502
[79] S.-N. Sun, M. Motta, R. N. Tazhigulov, A. T. K. Tan, G. K.-L. Chan and A. J. Min-nich, Quantum computation of finite-temperature static and dynamical properties of spin systems using quantum imaginary time evolution, PRX Quantum 2, 010317 (2021), doi:10.1103/PRXQuantum.2.010317. · doi:10.1103/PRXQuantum.2.010317
[80] R. Malouf, A comparison of algorithms for maximum entropy parameter estimation, in Proceedings of the 6th conference on natural language learning, Association for Compu-tational Linguistics, Stroudsburg, USA (2002), doi:10.3115/1118853.1118871. · doi:10.3115/1118853.1118871
[81] G. Andrew and J. Gao, Scalable training of L 1 -regularized log-linear models, in Proceedings of the 24th international conference on machine learning, Associa-tion for Computing Machinery, New York, USA, ISBN 9781595937933 (2007), doi:10.1145/1273496.1273501. · doi:10.1145/1273496.1273501
[82] Z. Li and H. A. Scheraga, Monte Carlo-minimization approach to the multiple-minima problem in protein folding, Proc. Natl. Acad. Sci. 84, 6611 (1987), doi:10.1073/pnas.84.19.6611. · doi:10.1073/pnas.84.19.6611
[83] D. J. Wales and J. P. K. Doye, Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms, J. Phys. Chem. A 101, 5111 (1997), doi:10.1021/jp970984n. · doi:10.1021/jp970984n
[84] D. J. Wales and H. A. Scheraga, Global optimization of clusters, crystals, and biomolecules, Science 285, 1368 (1999), doi:10.1126/science.285.5432.1368. · doi:10.1126/science.285.5432.1368
[85] D. Wales, Energy landscapes, Cambridge University Press, Cambridge, UK, ISBN 9780521814157 (2001), doi:10.1017/CBO9780511721724. · doi:10.1017/CBO9780511721724
[86] J. Gray, quimb: A Python package for quantum information and many-body calculations, J. Open Source Softw. 3, 819 (2018), doi:10.21105/joss.00819. · doi:10.21105/joss.00819
[87] S. McArdle, X. Yuan and S. Benjamin, Error-mitigated digital quantum simulation, Phys. Rev. Lett. 122, 180501 (2019), doi:10.1103/PhysRevLett.122.180501. · doi:10.1103/PhysRevLett.122.180501
[88] T. Chen, The recompiled circuit V from the preparation of the AKLT state, Zenodo (2023), doi:10.5281/zenodo.8131793. · doi:10.5281/zenodo.8131793
[89] T. Zhang, T. Chen, E. Li, B. Yang and L. K. Ang, Stack operation of tensor networks, Front. Phys. 10 (2022), doi:10.3389/fphy.2022.906399. · doi:10.3389/fphy.2022.906399
[90] E. Hellinger, Neue Begründung der Theorie quadratischer Formen von unendlichvielen Veränderlichen, J. Reine Angew. Math. 210 (1909), doi:10.1515/crll.1909.136.210. · JFM 40.0393.01 · doi:10.1515/crll.1909.136.210
[91] S. Aktar, A. Bartschi, A.-H. A. Badawy and S. Eidenbenz, A divide-and-conquer approach to Dicke state preparation, IEEE Trans. Quantum Eng. 3, 1 (2022), doi:10.1109/TQE.2022.3174547. · doi:10.1109/TQE.2022.3174547
[92] S. Dasgupta and T. S. Humble, Characterizing the reproducibility of noisy quantum cir-cuits, Entropy 24, 244 (2022), doi:10.3390/e24020244. · doi:10.3390/e24020244
[93] P. D. Nation, H. Kang, N. Sundaresan and J. M. Gambetta, Scalable mitigation of measurement errors on quantum computers, PRX Quantum 2, 040326 (2021), doi:10.1103/PRXQuantum.2.040326. · doi:10.1103/PRXQuantum.2.040326
[94] J. Cai, A. Miyake, W. Dür and H. J. Briegel, Universal quantum computer from a quantum magnet, Phys. Rev. A 82, 052309 (2010), doi:10.1103/PhysRevA.82.052309. · doi:10.1103/PhysRevA.82.052309
[95] T.-C. Wei, I. Affleck and R. Raussendorf, Two-dimensional Affleck-Kennedy-Lieb-Tasaki state on the honeycomb lattice is a universal resource for quantum computation, Phys. Rev. A 86, 032328 (2012), doi:10.1103/PhysRevA.86.032328. · doi:10.1103/PhysRevA.86.032328
[96] C. H. Lee, Many-body topological and skin states without open boundaries, Phys. Rev. B 104, 195102 (2021), doi:10.1103/PhysRevB.104.195102. · doi:10.1103/PhysRevB.104.195102
[97] Y. E. Kraus and O. Zilberberg, Quasiperiodicity and topology transcend dimensions, Nat. Phys. 12, 624 (2016), doi:10.1038/nphys3784. · doi:10.1038/nphys3784
[98] I. Petrides, H. M. Price and O. Zilberberg, Six-dimensional quantum Hall ef-fect and three-dimensional topological pumps, Phys. Rev. B 98, 125431 (2018), doi:10.1103/PhysRevB.98.125431. · doi:10.1103/PhysRevB.98.125431
[99] C. H. Lee, Y. Wang, Y. Chen and X. Zhang, Electromagnetic response of quantum Hall systems in dimensions five and six and beyond, Phys. Rev. B 98, 094434 (2018), doi:10.1103/PhysRevB.98.094434. · doi:10.1103/PhysRevB.98.094434
[100] Y. Ashida, Z. Gong and M. Ueda, Non-Hermitian physics, Adv. Phys. 69, 249 (2020), doi:10.1080/00018732.2021.1876991. · doi:10.1080/00018732.2021.1876991
[101] P.-Y. Chang, J.-S. You, X. Wen and S. Ryu, Entanglement spectrum and entropy in topo-logical non-Hermitian systems and nonunitary conformal field theory, Phys. Rev. Res. 2, 033069 (2020), doi:10.1103/PhysRevResearch.2.033069. · doi:10.1103/PhysRevResearch.2.033069
[102] C. H. Lee, Exceptional bound states and negative entanglement entropy, Phys. Rev. Lett. 128, 010402 (2022), doi:10.1103/PhysRevLett.128.010402. · Zbl 1494.60050 · doi:10.1103/PhysRevLett.128.010402
[103] Y.-Y. Zou, Y. Zhou, L.-M. Chen and P. Ye, Detecting bulk and edge exceptional points in non-Hermitian systems through generalized Petermann factors, (arXiv preprint) doi:10.48550/arXiv.2208.14944. · doi:10.48550/arXiv.2208.14944
[104] C. H. Lee, Exceptional bound states and negative entanglement entropy, Phys. Rev. Lett. 128, 010402 (2022), doi:10.1103/PhysRevLett.128.010402. · Zbl 1494.60050 · doi:10.1103/PhysRevLett.128.010402
[105] R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, S. Rotter and D. N. Christodoulides, Non-Hermitian physics and PT symmetry, Nat. Phys. 14, 11 (2018), doi:10.1038/nphys4323. · doi:10.1038/nphys4323
[106] K. Kawabata, K. Shiozaki, M. Ueda and M. Sato, Symmetry and topology in non-Hermitian physics, Phys. Rev. X 9, 041015 (2019), doi:10.1103/PhysRevX.9.041015. · doi:10.1103/PhysRevX.9.041015
[107] S. Mu, C. H. Lee, L. Li and J. Gong, Emergent Fermi surface in a many-body non-Hermitian fermionic chain, Phys. Rev. B 102, 081115 (2020), doi:10.1103/PhysRevB.102.081115. · doi:10.1103/PhysRevB.102.081115
[108] T. Yoshida, K. Kudo and Y. Hatsugai, Non-Hermitian fractional quantum Hall states, Sci. Rep. 9, 16895 (2019), doi:10.1038/s41598-019-53253-8. · doi:10.1038/s41598-019-53253-8
[109] L. Li, C. H. Lee and J. Gong, Impurity induced scale-free localization, Commun. Phys. 4, 42 (2021), doi:10.1038/s42005-021-00547-x. · doi:10.1038/s42005-021-00547-x
[110] T. Yoshida, K. Kudo, H. Katsura and Y. Hatsugai, Fate of fractional quantum Hall states in open quantum systems: Characterization of correlated topological states for the full Liouvillian, Phys. Rev. Res. 2, 033428 (2020), doi:10.1103/PhysRevResearch.2.033428. · doi:10.1103/PhysRevResearch.2.033428
[111] F. Qin, R. Shen and C. H. Lee, Non-Hermitian squeezed polarons, Phys. Rev. A 107, L010202 (2023), doi:10.1103/PhysRevA.107.L010202. · doi:10.1103/PhysRevA.107.L010202
[112] R. Shen and C. H. Lee, Non-Hermitian skin clusters from strong interactions, Communi-cations Physics 5, 1 (2022), doi:10.1038/s42005-022-01015-w. · doi:10.1038/s42005-022-01015-w
[113] Y. Ashida, S. Furukawa and M. Ueda, Parity-time-symmetric quantum critical phenom-ena, Nat. Commun. 8, 15791 (2017), doi:10.1038/ncomms15791. · doi:10.1038/ncomms15791
[114] L.-J. Zhai and S. Yin, Out-of-time-ordered correlator in non-Hermitian quantum systems, Phys. Rev. B 102, 054303 (2020), doi:10.1103/PhysRevB.102.054303. · doi:10.1103/PhysRevB.102.054303
[115] R. Hamazaki, Exceptional dynamical quantum phase transitions in periodically driven systems, Nat. Commun. 12, 5108 (2021), doi:10.1038/s41467-021-25355-3. · doi:10.1038/s41467-021-25355-3
[116] J. Jin, A. Biella, O. Viyuela, C. Ciuti, R. Fazio and D. Rossini, Phase diagram of the dissipative quantum Ising model on a square lattice, Phys. Rev. B 98, 241108 (2018), doi:10.1103/PhysRevB.98.241108. · doi:10.1103/PhysRevB.98.241108
[117] L. Sá, P. Ribeiro and T. Prosen, Complex spacing ratios: A signature of dissipative quantum chaos, Phys. Rev. X 10, 021019 (2020), doi:10.1103/PhysRevX.10.021019. · doi:10.1103/PhysRevX.10.021019
[118] G. Passarelli, P. Lucignano, R. Fazio and A. Russomanno, Dissipative time crystals with long-range Lindbladians, Phys. Rev. B 106, 224308 (2022), doi:10.1103/PhysRevB.106.224308. · doi:10.1103/PhysRevB.106.224308
[119] D. Rossini and E. Vicari, Coherent and dissipative dynamics at quantum phase transitions, Phys. Rep. 936, 1 (2021), doi:10.1016/j.physrep.2021.08.003. · Zbl 07408907 · doi:10.1016/j.physrep.2021.08.003
[120] M. Mahdian and H. D. Yeganeh, Hybrid quantum variational algorithm for simulat-ing open quantum systems with near-term devices, J. Phys. A: Math. Theor. 53, 415301 (2020), doi:10.1088/1751-8121/abad76. · Zbl 1519.68104 · doi:10.1088/1751-8121/abad76
[121] L. Del Re, B. Rost, A. F. Kemper and J. K. Freericks, Driven-dissipative quantum mechanics on a lattice: Simulating a fermionic reservoir on a quantum computer, Phys. Rev. B 102, 125112 (2020), doi:10.1103/PhysRevB.102.125112. · doi:10.1103/PhysRevB.102.125112
[122] O. E. Sommer, F. Piazza and D. J. Luitz, Many-body hierarchy of dissipa-tive timescales in a quantum computer, Phys. Rev. Res. 3, 023190 (2021), doi:10.1103/PhysRevResearch.3.023190. · doi:10.1103/PhysRevResearch.3.023190
[123] S. Tornow, W. Gehrke and U. Helmbrecht, Non-equilibrium dynamics of a dissipative two-site Hubbard model simulated on IBM quantum computers, J. Phys. A: Math. Theor. 55, 245302 (2022), doi:10.1088/1751-8121/ac6bd0. · Zbl 1507.81075 · doi:10.1088/1751-8121/ac6bd0
[124] Z. Weinstein, Y. Bao and E. Altman, Measurement-induced power-law negativity in an open monitored quantum circuit, Phys. Rev. Lett. 129, 080501 (2022), doi:10.1103/PhysRevLett.129.080501. · doi:10.1103/PhysRevLett.129.080501
[125] A. Kay, Quantikz, University of London, London, UK (2019), doi:10.17637/RH.7000520. · doi:10.17637/RH.7000520
[126] K. Temme, S. Bravyi and J. M. Gambetta, Error mitigation for short-depth quantum cir-cuits, Phys. Rev. Lett. 119, 180509 (2017), doi:10.1103/PhysRevLett.119.180509. · doi:10.1103/PhysRevLett.119.180509
[127] S. Endo, S. C. Benjamin and Y. Li, Practical quantum error mitigation for near-future applications, Phys. Rev. X 8, 031027 (2018), doi:10.1103/PhysRevX.8.031027. · doi:10.1103/PhysRevX.8.031027
[128] T. Giurgica-Tiron, Y. Hindy, R. LaRose, A. Mari and W. J. Zeng, Digital zero noise extrap-olation for quantum error mitigation, in 2020 IEEE international conference on quantum computing and engineering, Denver, USA (2020), doi:10.1109/QCE49297.2020.00045. · doi:10.1109/QCE49297.2020.00045
[129] A. Kandala, K. Temme, A. D. Córcoles, A. Mezzacapo, J. M. Chow and J. M. Gambetta, Error mitigation extends the computational reach of a noisy quantum processor, Nature 567, 491 (2019), doi:10.1038/s41586-019-1040-7. · doi:10.1038/s41586-019-1040-7
[130] J. Sun, X. Yuan, T. Tsunoda, V. Vedral, S. C. Benjamin and S. Endo, Mitigating realistic noise in practical noisy intermediate-scale quantum devices, Phys. Rev. Appl. 15, 034026 (2021), doi:10.1103/PhysRevApplied.15.034026. · doi:10.1103/PhysRevApplied.15.034026
[131] Y. Kim, C. J. Wood, T. J. Yoder, S. T. Merkel, J. M. Gambetta, K. Temme and A. Kandala, Scalable error mitigation for noisy quantum circuits produces competitive expectation val-ues, Nat. Phys. 19, 752 (2023), doi:10.1038/s41567-022-01914-3. · doi:10.1038/s41567-022-01914-3
[132] S. Bravyi, S. Sheldon, A. Kandala, D. C. Mckay and J. M. Gambetta, Mitigating measurement errors in multiqubit experiments, Phys. Rev. A 103, 042605 (2021), doi:10.1103/PhysRevA.103.042605. · doi:10.1103/PhysRevA.103.042605
[133] J. R. Wootton, F. Harkins, N. T. Bronn, A. C. Vazquez, A. Phan and A. T. As-faw, Teaching quantum computing with an interactive textbook, in 2021 IEEE inter-national conference on quantum computing and engineering, Broomfield, USA (2021), doi:10.1109/QCE52317.2021.00058. · doi:10.1109/QCE52317.2021.00058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.