×

Extensive long-range entanglement in a nonequilibrium steady state. (English) Zbl 07906143

Summary: Entanglement measures constitute powerful tools in the quantitative description of quantum many-body systems out of equilibrium. We study entanglement in the current-carrying steady state of a paradigmatic one-dimensional model of noninteracting fermions at zero temperature in the presence of a scatterer. We show that disjoint intervals located on opposite sides of the scatterer, and within similar distances from it, maintain volume-law entanglement regardless of their separation, as measured by their fermionic negativity and coherent information. The mutual information of the intervals, which quantifies the total correlations between them, follows a similar scaling. Interestingly, this scaling entails in particular that if the position of one of the intervals is kept fixed, then the correlation measures depend non-monotonically on the distance between the intervals. By deriving exact expressions for the extensive terms of these quantities, we prove their simple functional dependence on the scattering probabilities, and demonstrate that the strong long-range entanglement is generated by the coherence between the transmitted and reflected parts of propagating particles within the bias-voltage window. The generality and simplicity of the model suggest that this behavior should characterize a large class of nonequilibrium steady states.

MSC:

81Pxx Foundations, quantum information and its processing, quantum axioms, and philosophy
82Bxx Equilibrium statistical mechanics
82Cxx Time-dependent statistical mechanics (dynamic and nonequilibrium)

References:

[1] L. D’Alessio, Y. Kafri, A. Polkovnikov and M. Rigol, From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics, Adv. Phys. 65, 239 (2016), doi:10.1080/00018732.2016.1198134. · doi:10.1080/00018732.2016.1198134
[2] V. Alba and P. Calabrese, Entanglement and thermodynamics after a quantum quench in integrable systems, Proc. Natl. Acad. Sci. 114, 7947 (2017), doi:10.1073/pnas.1703516114. · Zbl 1404.82033 · doi:10.1073/pnas.1703516114
[3] J. M. Deutsch, Eigenstate thermalization hypothesis, Rep. Prog. Phys. 81, 082001 (2018), doi:10.1088/1361-6633/aac9f1. · doi:10.1088/1361-6633/aac9f1
[4] R. Nandkishore and D. A. Huse, Many-body localization and thermalization in quantum statistical mechanics, Annu. Rev. Condens. Matter Phys. 6, 15 (2015), doi:10.1146/annurev-conmatphys-031214-014726. · doi:10.1146/annurev-conmatphys-031214-014726
[5] D. A. Abanin, E. Altman, I. Bloch and M. Serbyn, Colloquium: Many-body localization, thermalization, and entanglement, Rev. Mod. Phys. 91, 021001 (2019), doi:10.1103/RevModPhys.91.021001. · doi:10.1103/RevModPhys.91.021001
[6] M. Serbyn, D. A. Abanin and Z. Papić, Quantum many-body scars and weak breaking of ergodicity, Nat. Phys. 17, 675 (2021), doi:10.1038/s41567-021-01230-2. · doi:10.1038/s41567-021-01230-2
[7] M. Mestyán, B. Bertini, L. Piroli and P. Calabrese, Exact solution for the quench dynamics of a nested integrable system, J. Stat. Mech.: Theory Exp. 083103 (2017), doi:10.1088/1742-5468/aa7df0. · Zbl 1457.82214 · doi:10.1088/1742-5468/aa7df0
[8] V. Alba and P. Calabrese, Entanglement dynamics after quantum quenches in generic integrable systems, SciPost Phys. 4, 017 (2018), doi:10.21468/SciPostPhys.4.3.017. · doi:10.21468/SciPostPhys.4.3.017
[9] V. Alba and P. Calabrese, Quantum information scrambling after a quantum quench, Phys. Rev. B 100, 115150 (2019), doi:10.1103/PhysRevB.100.115150. · doi:10.1103/PhysRevB.100.115150
[10] V. Alba and P. Calabrese, Quantum information dynamics in multipartite integrable systems, Europhys. Lett. 126, 60001 (2019), doi:10.1209/0295-5075/126/60001. · doi:10.1209/0295-5075/126/60001
[11] V. Eisler and I. Peschel, On entanglement evolution across defects in critical chains, Europhys. Lett. 99, 20001 (2012), doi:10.1209/0295-5075/99/20001. · Zbl 1246.82023 · doi:10.1209/0295-5075/99/20001
[12] M. Serbyn, Z. Papić and D. A. Abanin, Local conservation laws and the structure of the many-body localized states, Phys. Rev. Lett. 111, 127201 (2013), doi:10.1103/PhysRevLett.111.127201. · doi:10.1103/PhysRevLett.111.127201
[13] H. Kim and D. A. Huse, Ballistic spreading of entanglement in a diffusive nonintegrable system, Phys. Rev. Lett. 111, 127205 (2013), doi:10.1103/PhysRevLett.111.127205. · doi:10.1103/PhysRevLett.111.127205
[14] J. Schachenmayer, B. P. Lanyon, C. F. Roos and A. J. Daley, Entanglement growth in quench dynamics with variable range interactions, Phys. Rev. X 3, 031015 (2013), doi:10.1103/PhysRevX.3.031015. · doi:10.1103/PhysRevX.3.031015
[15] C. T. Asplund and A. Bernamonti, Mutual information after a local quench in conformal field theory, Phys. Rev. D 89, 066015 (2014), doi:10.1103/PhysRevD.89.066015. · doi:10.1103/PhysRevD.89.066015
[16] V. Eisler and Z. Zimborás, Area-law violation for the mutual information in a nonequilibrium steady state, Phys. Rev. A 89, 032321 (2014), doi:10.1103/PhysRevA.89.032321. · doi:10.1103/PhysRevA.89.032321
[17] V. Eisler and Z. Zimborás, Entanglement negativity in the harmonic chain out of equilibrium, New J. Phys. 16, 123020 (2014), doi:10.1088/1367-2630/16/12/123020. · doi:10.1088/1367-2630/16/12/123020
[18] A. Coser, E. Tonni and P. Calabrese, Entanglement negativity after a global quantum quench, J. Stat. Mech.: Theory Exp. P12017 (2014), doi:10.1088/1742-5468/2014/12/p12017. · Zbl 1456.81055 · doi:10.1088/1742-5468/2014/12/p12017
[19] X. Wen, P.-Y. Chang and S. Ryu, Entanglement after a local quantum quench in conformal field theories, Phys. Rev. B 92, 075109 (2015), doi:10.1103/PhysRevB.92.075109. · doi:10.1103/PhysRevB.92.075109
[20] M. Hoogeveen and B. Doyon, Entanglement negativity and entropy in non-equilibrium conformal field theory, Nucl. Phys. B 898, 78 (2015), doi:10.1016/j.nuclphysb.2015.06.021. · Zbl 1329.81427 · doi:10.1016/j.nuclphysb.2015.06.021
[21] M. Gruber and V. Eisler, Time evolution of entanglement negativity across a defect, J. Phys. A: Math. Theor. 53, 205301 (2020), doi:10.1088/1751-8121/ab831c. · Zbl 1514.81045 · doi:10.1088/1751-8121/ab831c
[22] S. Paul, P. Titum and M. F. Maghrebi, Hidden quantum criticality and entanglement in quench dynamics, (arXiv preprint) doi:10.48550/arXiv.2202.04654. · doi:10.48550/arXiv.2202.04654
[23] P. Ribeiro, Steady-state properties of a nonequilibrium Fermi gas, Phys. Rev. B 96, 054302 (2017), doi:10.1103/PhysRevB.96.054302. · doi:10.1103/PhysRevB.96.054302
[24] S. Maity, S. Bandyopadhyay, S. Bhattacharjee and A. Dutta, Growth of mutual information in a quenched one-dimensional open quantum many-body system, Phys. Rev. B 101, 180301 (2020), doi:10.1103/PhysRevB.101.180301. · doi:10.1103/PhysRevB.101.180301
[25] T. O. Puel, S. Chesi, S. Kirchner and P. Ribeiro, Nonequilibrium phases and phase transitions of the XY model, Phys. Rev. B 103, 035108 (2021), doi:10.1103/PhysRevB.103.035108. · doi:10.1103/PhysRevB.103.035108
[26] V. Alba and F. Carollo, Spreading of correlations in Markovian open quantum systems, Phys. Rev. B 103, L020302 (2021), doi:10.1103/PhysRevB.103.L020302. · doi:10.1103/PhysRevB.103.L020302
[27] F. Carollo and V. Alba, Dissipative quasiparticle picture for quadratic Markovian open quantum systems, Phys. Rev. B 105, 144305 (2022), doi:10.1103/PhysRevB.105.144305. · doi:10.1103/PhysRevB.105.144305
[28] S. Fraenkel and M. Goldstein, Entanglement measures in a nonequilibrium steady state: Exact results in one dimension, SciPost Phys. 11, 085 (2021), doi:10.21468/SciPostPhys.11.4.085. · doi:10.21468/SciPostPhys.11.4.085
[29] V. Alba, Unbounded entanglement production via a dissipative impurity, SciPost Phys. 12, 011 (2022), doi:10.21468/SciPostPhys.12.1.011. · doi:10.21468/SciPostPhys.12.1.011
[30] M. J. Gullans and D. A. Huse, Entanglement structure of current-driven diffusive fermion systems, Phys. Rev. X 9, 021007 (2019), doi:10.1103/PhysRevX.9.021007. · doi:10.1103/PhysRevX.9.021007
[31] D. Bernard and T. Jin, Open quantum symmetric simple exclusion process, Phys. Rev. Lett. 123, 080601 (2019), doi:10.1103/PhysRevLett.123.080601. · doi:10.1103/PhysRevLett.123.080601
[32] L. Hruza and D. Bernard, Coherent fluctuations in noisy mesoscopic systems, the open quantum SSEP, and free probability, Phys. Rev. X 13, 011045 (2023), doi:10.1103/PhysRevX.13.011045. · doi:10.1103/PhysRevX.13.011045
[33] M. J. Gullans and D. A. Huse, Localization as an entanglement phase transition in boundary-driven Anderson models, Phys. Rev. Lett. 123, 110601 (2019), doi:10.1103/PhysRevLett.123.110601. · doi:10.1103/PhysRevLett.123.110601
[34] F. Verstraete, V. Murg and J. I. Cirac, Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems, Adv. Phys. 57, 143 (2008), doi:10.1080/14789940801912366. · doi:10.1080/14789940801912366
[35] U. Schollwöck, The density-matrix renormalization group in the age of matrix product states, Ann. Phys. 326, 96 (2011), doi:10.1016/j.aop.2010.09.012. · Zbl 1213.81178 · doi:10.1016/j.aop.2010.09.012
[36] M. M. Rams and M. Zwolak, Breaking the entanglement barrier: Tensor network simulation of quantum transport, Phys. Rev. Lett. 124, 137701 (2020), doi:10.1103/PhysRevLett.124.137701. · doi:10.1103/PhysRevLett.124.137701
[37] N. Schuch, M. M. Wolf, F. Verstraete and J. I. Cirac, Entropy scaling and simulability by matrix product states, Phys. Rev. Lett. 100, 030504 (2008), doi:10.1103/PhysRevLett.100.030504. · Zbl 1228.82014 · doi:10.1103/PhysRevLett.100.030504
[38] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett. 70, 1895 (1993), doi:10.1103/PhysRevLett.70.1895. · Zbl 1051.81505 · doi:10.1103/PhysRevLett.70.1895
[39] C. H. Bennett and D. P. DiVincenzo, Quantum information and computation, Nature 404, 247 (2000), doi:10.1038/35005001. · Zbl 1369.81023 · doi:10.1038/35005001
[40] N. Gisin, G. Ribordy, W. Tittel and H. Zbinden, Quantum cryptography, Rev. Mod. Phys. 74, 145 (2002), doi:10.1103/RevModPhys.74.145. · Zbl 1371.81006 · doi:10.1103/RevModPhys.74.145
[41] R. Horodecki, P. Horodecki, M. Horodecki and K. Horodecki, Quantum entanglement, Rev. Mod. Phys. 81, 865 (2009), doi:10.1103/RevModPhys.81.865. · Zbl 1205.81012 · doi:10.1103/RevModPhys.81.865
[42] B. Groisman, S. Popescu and A. Winter, Quantum, classical, and total amount of correlations in a quantum state, Phys. Rev. A 72, 032317 (2005), doi:10.1103/PhysRevA.72.032317. · doi:10.1103/PhysRevA.72.032317
[43] H. Shapourian, K. Shiozaki and S. Ryu, Partial time-reversal transformation and entanglement negativity in fermionic systems, Phys. Rev. B 95, 165101 (2017), doi:10.1103/PhysRevB.95.165101. · doi:10.1103/PhysRevB.95.165101
[44] J. Eisert, V. Eisler and Z. Zimborás, Entanglement negativity bounds for fermionic Gaussian states, Phys. Rev. B 97, 165123 (2018), doi:10.1103/PhysRevB.97.165123. · doi:10.1103/PhysRevB.97.165123
[45] H. Shapourian and S. Ryu, Entanglement negativity of fermions: Monotonicity, separability criterion, and classification of few-mode states, Phys. Rev. A 99, 022310 (2019), doi:10.1103/PhysRevA.99.022310. · doi:10.1103/PhysRevA.99.022310
[46] B. Schumacher and M. A. Nielsen, Quantum data processing and error correction, Phys. Rev. A 54, 2629 (1996), doi:10.1103/PhysRevA.54.2629. · doi:10.1103/PhysRevA.54.2629
[47] M. Horodecki, J. Oppenheim and A. Winter, Partial quantum information, Nature 436, 673 (2005), doi:10.1038/nature03909. · doi:10.1038/nature03909
[48] M. Christandl and A. Winter, “Squashed entanglement”: An additive entanglement measure, J. Math. Phys. 45, 829 (2004), doi:10.1063/1.1643788. · Zbl 1070.81013 · doi:10.1063/1.1643788
[49] E. A. Carlen and E. H. Lieb, Bounds for entanglement via an extension of strong subadditivity of entropy, Lett. Math. Phys. 101, 1 (2012), doi:10.1007/s11005-012-0565-6. · Zbl 1254.81019 · doi:10.1007/s11005-012-0565-6
[50] E. Merzbacher, Quantum mechanics, Wiley, Hoboken, USA, ISBN 9780471887027 (1998).
[51] R. G. Newton, Inverse scattering by a local impurity in a periodic potential in one dimension, J. Math. Phys. 24, 2152 (1983), doi:10.1063/1.525968. · Zbl 0524.34026 · doi:10.1063/1.525968
[52] B.-Q. Jin and V. E. Korepin, Quantum spin chain, Toeplitz determinants and the Fisher-Hartwig conjecture, J. Stat. Phys. 116, 79 (2004), doi:10.1023/B:JOSS.0000037230.37166.42. · Zbl 1142.82314 · doi:10.1023/B:JOSS.0000037230.37166.42
[53] P. Deift, A. Its and I. Krasovsky, Asymptotics of Toeplitz, Hankel, and Toeplitz+Hankel determinants with Fisher-Hartwig singularities, Ann. Math. 174, 1243 (2011), doi:10.4007/annals.2011.174.2.12. · Zbl 1232.15006 · doi:10.4007/annals.2011.174.2.12
[54] F. Ares, J. G. Esteve, F. Falceto and A. R. de Queiroz, Entanglement in fermionic chains with finite-range coupling and broken symmetries, Phys. Rev. A 92, 042334 (2015), doi:10.1103/PhysRevA.92.042334. · doi:10.1103/PhysRevA.92.042334
[55] F. Ares, J. G. Esteve, F. Falceto and A. R. de Queiroz, Entanglement entropy in the long-range Kitaev chain, Phys. Rev. A 97, 062301 (2018), doi:10.1103/PhysRevA.97.062301. · doi:10.1103/PhysRevA.97.062301
[56] S. Fraenkel and M. Goldstein, Exact asymptotics for long-range quantum correlations in a nonequilibrium steady state, In preparation.
[57] I. Peschel, Calculation of reduced density matrices from correlation functions, J. Phys. A: Math. Gen. 36, L205 (2003), doi:10.1088/0305-4470/36/14/101. · Zbl 1049.82011 · doi:10.1088/0305-4470/36/14/101
[58] H. Shapourian and S. Ryu, Finite-temperature entanglement negativity of free fermions, J. Stat. Mech.: Theory Exp. 043106 (2019), doi:10.1088/1742-5468/ab11e0. · doi:10.1088/1742-5468/ab11e0
[59] R. Wong, Asymptotic approximations of integrals, Soc. Ind. Appl. Math., Philadelphia, USA, ISBN 9780898714975 (2001), doi:10.1137/1.9780898719260. · Zbl 1078.41001 · doi:10.1137/1.9780898719260
[60] M. Fagotti and P. Calabrese, Evolution of entanglement entropy following a quantum quench: Analytic results for the XY chain in a transverse magnetic field, Phys. Rev. A 78, 010306 (2008), doi:10.1103/PhysRevA.78.010306. · doi:10.1103/PhysRevA.78.010306
[61] P. Mehta and N. Andrei, Nonequilibrium transport in quantum impurity models: The Bethe ansatz for open systems, Phys. Rev. Lett. 96, 216802 (2006), doi:10.1103/PhysRevLett.96.216802. · doi:10.1103/PhysRevLett.96.216802
[62] B. Bertini, M. Fagotti, L. Piroli and P. Calabrese, Entanglement evolution and generalised hydrodynamics: Noninteracting systems, J. Phys. A: Math. Theor. 51, 39LT01 (2018), doi:10.1088/1751-8121/aad82e. · Zbl 1427.82037 · doi:10.1088/1751-8121/aad82e
[63] O. Gamayun, O. Lychkovskiy and J.-S. Caux, Fredholm determinants, full counting statistics and Loschmidt echo for domain wall profiles in one-dimensional free fermionic chains, SciPost Phys. 8, 036 (2020), doi:10.21468/SciPostPhys.8.3.036. · doi:10.21468/SciPostPhys.8.3.036
[64] M. Brenes, E. Mascarenhas, M. Rigol and J. Goold, High-temperature coherent transport in the XXZ chain in the presence of an impurity, Phys. Rev. B 98, 235128 (2018), doi:10.1103/PhysRevB.98.235128. · doi:10.1103/PhysRevB.98.235128
[65] A. Bastianello, Lack of thermalization for integrability-breaking impurities, Europhys. Lett. 125, 20001 (2019), doi:10.1209/0295-5075/125/20001. · doi:10.1209/0295-5075/125/20001
[66] M. Lotem, A. Weichselbaum, J. von Delft and M. Goldstein, Renormalized Lindblad driving: A numerically exact nonequilibrium quantum impurity solver, Phys. Rev. Res. 2, 043052 (2020), doi:10.1103/PhysRevResearch.2.043052. · doi:10.1103/PhysRevResearch.2.043052
[67] T. Jin, M. Filippone and T. Giamarchi, Generic transport formula for a system driven by Markovian reservoirs, Phys. Rev. B 102, 205131 (2020), doi:10.1103/PhysRevB.102.205131. · doi:10.1103/PhysRevB.102.205131
[68] A. Y. Kitaev, Unpaired Majorana fermions in quantum wires, Phys.-Usp. 44, 131 (2001), doi:10.1070/1063-7869/44/10S/S29. · doi:10.1070/1063-7869/44/10S/S29
[69] D. Husmann, S. Uchino, S. Krinner, M. Lebrat, T. Giamarchi, T. Esslinger and J.-P. Brantut, Connecting strongly correlated superfluids by a quantum point contact, Science 350, 1498 (2015), doi:10.1126/science.aac9584. · Zbl 1355.81036 · doi:10.1126/science.aac9584
[70] D. A. Abanin and E. Demler, Measuring entanglement entropy of a generic many-body system with a quantum switch, Phys. Rev. Lett. 109, 020504 (2012), doi:10.1103/PhysRevLett.109.020504. · doi:10.1103/PhysRevLett.109.020504
[71] A. J. Daley, H. Pichler, J. Schachenmayer and P. Zoller, Measuring entanglement growth in quench dynamics of bosons in an optical lattice, Phys. Rev. Lett. 109, 020505 (2012), doi:10.1103/PhysRevLett.109.020505. · doi:10.1103/PhysRevLett.109.020505
[72] R. Islam, R. Ma, P. M. Preiss, M. E. Tai, A. Lukin, M. Rispoli and M. Greiner, Measuring entanglement entropy in a quantum many-body system, Nature 528, 77 (2015), doi:10.1038/nature15750. · doi:10.1038/nature15750
[73] A. Elben, B. Vermersch, M. Dalmonte, J. I. Cirac and P. Zoller, Rényi entropies from random quenches in atomic Hubbard and spin models, Phys. Rev. Lett. 120, 050406 (2018), doi:10.1103/PhysRevLett.120.050406. · doi:10.1103/PhysRevLett.120.050406
[74] E. Cornfeld, E. Sela and M. Goldstein, Measuring fermionic entanglement: Entropy, negativity, and spin structure, Phys. Rev. A 99, 062309 (2019), doi:10.1103/PhysRevA.99.062309. · doi:10.1103/PhysRevA.99.062309
[75] T. Brydges, A. Elben, P. Jurcevic, B. Vermersch, C. Maier, B. P. Lanyon, P. Zoller, R. Blatt and C. F. Roos, Probing Rényi entanglement entropy via randomized measurements, Science 364, 260 (2019), doi:10.1126/science.aau4963. · doi:10.1126/science.aau4963
[76] M. Goldstein and E. Sela, Symmetry-resolved entanglement in many-body systems, Phys. Rev. Lett. 120, 200602 (2018), doi:10.1103/PhysRevLett.120.200602. · doi:10.1103/PhysRevLett.120.200602
[77] E. Cornfeld, M. Goldstein and E. Sela, Imbalance entanglement: Symmetry decomposition of negativity, Phys. Rev. A 98, 032302 (2018), doi:10.1103/PhysRevA.98.032302. · doi:10.1103/PhysRevA.98.032302
[78] N. Feldman and M. Goldstein, Dynamics of charge-resolved entanglement after a local quench, Phys. Rev. B 100, 235146 (2019), doi:10.1103/PhysRevB.100.235146. · doi:10.1103/PhysRevB.100.235146
[79] R. Bonsignori, P. Ruggiero and P. Calabrese, Symmetry resolved entanglement in free fermionic systems, J. Phys. A: Math. Theor. 52, 475302 (2019), doi:10.1088/1751-8121/ab4b77. · Zbl 1509.81063 · doi:10.1088/1751-8121/ab4b77
[80] S. Fraenkel and M. Goldstein, Symmetry resolved entanglement: Exact results in 1D and beyond, J. Stat. Mech.: Theory Exp. 033106 (2020), doi:10.1088/1742-5468/ab7753. · Zbl 1456.81064 · doi:10.1088/1742-5468/ab7753
[81] S. Murciano, G. Di Giulio and P. Calabrese, Symmetry resolved entanglement in gapped integrable systems: A corner transfer matrix approach, SciPost Phys. 8, 046 (2020), doi:10.21468/SciPostPhys.8.3.046. · doi:10.21468/SciPostPhys.8.3.046
[82] L. Capizzi, P. Ruggiero and P. Calabrese, Symmetry resolved entanglement entropy of excited states in a CFT, J. Stat. Mech.: Theory Exp. 073101 (2020), doi:10.1088/1742-5468/ab96b6. · Zbl 1459.81097 · doi:10.1088/1742-5468/ab96b6
[83] M. T. Tan and S. Ryu, Particle number fluctuations, Rényi entropy, and symmetry-resolved entanglement entropy in a two-dimensional Fermi gas from multidimensional bosonization, Phys. Rev. B 101, 235169 (2020), doi:10.1103/PhysRevB.101.235169. · doi:10.1103/PhysRevB.101.235169
[84] X. Turkeshi, P. Ruggiero, V. Alba and P. Calabrese, Entanglement equipartition in critical random spin chains, Phys. Rev. B 102, 014455 (2020), doi:10.1103/PhysRevB.102.014455. · doi:10.1103/PhysRevB.102.014455
[85] B. Estienne, Y. Ikhlef and A. Morin-Duchesne, Finite-size corrections in critical symmetry-resolved entanglement, SciPost Phys. 10, 054 (2021), doi:10.21468/SciPostPhys.10.3.054. · doi:10.21468/SciPostPhys.10.3.054
[86] S. Zhao, C. Northe and R. Meyer, Symmetry-resolved entanglement in AdS 3 /CFT 2 coupled to U(1) Chern-Simons theory, J. High Energy Phys. 07, 030 (2021), doi:10.1007/JHEP07(2021)030. · Zbl 1468.81089 · doi:10.1007/JHEP07(2021)030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.