×

Aerodynamic optimization of a micro flapping rotary wing in hovering flight. (English) Zbl 07906129

Summary: The aerodynamic characteristics of flapping rotary wings (FRWs) have received considerable attention in design. In this study, optimizations of aerodynamic performance and kinematics of FRWs over the parameter space are explored. A well-validated Quasi-Steady model is employed to estimate the aerodynamic characteristics of FRWs in hovering flight, and a genetic algorithm is utilized for optimizing. It is assumed that flapping and pitching motion are given by motion parameters actively, while rotation is produced passively. Our results show that the optimal kinematic parameters are independent of flapping frequencies. The maximum lift comes from the high rotational speed caused by the small pitching amplitude, and the maximum power factor is from the large pitching amplitude. The dimensionless optimization of the flapping velocity as reference velocity is comparable to the dimensional results. The optimization model proposed in this study can be applied to the actual model for qualitative analysis. Rotational equilibrium power factor can reach more than 80% of the maximum value without rotation equilibrium constraint, but which rotational status can achieve the maximum power factor depends on the pitching angle at the mid-downstroke (\(\alpha_d\)). This study is helpful for the kinematic parameter design and further research of FRWs.

MSC:

76Zxx Biological fluid mechanics
76-XX Fluid mechanics
76Gxx General aerodynamics and subsonic flows
Full Text: DOI

References:

[1] Pines, DJ; Bohorquez, F., Challenges facing future micro-air-vehicle development, J. Aircr., 43, 290-305, 2006 · doi:10.2514/1.4922
[2] Chen, L.; Zhang, Y.; Zhou, C.; Wu, J., Aerodynamic mechanisms in bio-inspired micro air vehicles: a review in the light of novel compound layouts, IET Cyber-Syst. Robot., 1, 2-12, 2019 · doi:10.1049/iet-csr.2018.0007
[3] Keennon, M., Klingebiel, K., Won, H.: Development of the nano hummingbird: A tailless flapping wing micro air vehicle. In: 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. American Institute of Aeronautics and Astronautics, Nashville, Tennessee (2012). doi:10.2514/6.2012-588
[4] Ma, KY; Chirarattananon, P.; Fuller, SB; Wood, RJ, Controlled flight of a biologically inspired, insect-scale robot, Science, 340, 603-607, 2013 · doi:10.1126/science.1231806
[5] Phan, HV; Park, HC, Mechanisms of collision recovery in flying beetles and flapping-wing robots, Science, 370, 1214-1219, 2020 · doi:10.1126/science.abd3285
[6] Zheng, L.; Hedrick, T.; Mittal, R., A comparative study of the hovering efficiency of flapping and revolving wings, Bioinspir. Biomim., 8, 2013 · doi:10.1088/1748-3182/8/3/036001
[7] Hawkes, EW; Lentink, D., Fruit fly scale robots can hover longer with flapping wings than with spinning wings, J. R. Soc. Interface., 2016 · doi:10.1098/rsif.2016.0730
[8] Wu, J.; Zhou, C.; Zhang, Y., Aerodynamic power efficiency comparison of various micro-air-vehicle layouts in hovering flight, AIAA J., 55, 1265-1278, 2017 · doi:10.2514/1.J055221
[9] Vandenberghe, N.; Zhang, J.; Childress, S., Symmetry breaking leads to forward flapping flight, J. Fluid Mech., 506, 147-155, 2004 · Zbl 1073.76506 · doi:10.1017/s0022112004008468
[10] Guo, S.; Li, D.; Wu, J., Theoretical and experimental study of a piezoelectric flapping wing rotor for micro aerial vehicle, Aerosp. Sci. Technol., 23, 429-438, 2012 · doi:10.1016/j.ast.2011.10.002
[11] Wu, J.; Wang, D.; Zhang, Y., Aerodynamic analysis of a flapping rotary wing at a low Reynolds number, AIAA J., 53, 2951-2966, 2015 · doi:10.2514/1.J053845
[12] Wu, J.; Qiu, J.; Zhang, Y., Automated kinematics measurement and aerodynamics of a bioinspired flapping rotary wing, J. Bionic Eng., 14, 726-737, 2017 · doi:10.1016/s1672-6529(16)60438-9
[13] Wang, D.; Wu, J.; Zhang, Y., Effects of geometric parameters on flapping rotary wings at low Reynolds numbers, AIAA J., 56, 1372-1387, 2018 · doi:10.2514/1.J055994
[14] Zhou, C.; Zhang, Y.; Wu, J., Unsteady aerodynamic forces and power consumption of a micro flapping rotary wing in hovering flight, J. Bionic Eng., 15, 298-312, 2018 · doi:10.1007/s42235-018-0023-y
[15] Chen, L., Zhou, C., Wu, J.: The role of effective angle of attack in hovering pitching-flapping-perturbed revolving wings at low Reynolds number. Phys. Fluids. 32, (2020). doi:10.1063/1.5130959
[16] Wu, J.; Yan, H.; Zhou, C.; Zhang, Y., Unsteady aerodynamics of a micro flapping rotary wing in forward flight, Aerosp. Sci. Technol., 111, 2021 · doi:10.1016/j.ast.2021.106530
[17] Zhou, C.; Wu, J., Kinematics, deformation, and aerodynamics of a flexible flapping rotary wing in hovering flight, J. Bionic Eng., 18, 197-209, 2021 · doi:10.1007/s42235-021-0014-2
[18] Alguacil, A.; Jardin, T.; Gourdain, N., Fluid-structure interactions and unsteady kinematics of a low-Reynolds-number Rotor, AIAA J., 58, 955-967, 2020 · doi:10.2514/1.J058230
[19] Zhou, C.; Wu, J.; Guo, S.; Li, D., Experimental study on the lift generated by a flapping rotary wing applied in a micro air vehicle, Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng., 228, 2083-2093, 2013 · doi:10.1177/0954410013512761
[20] Chen, L.; Zhang, Y.; Wu, J., Study on lift enhancement of a flapping rotary wing by a bore-hole design, Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng., 232, 1315-1333, 2017 · doi:10.1177/0954410016688927
[21] Chen, L.; Wu, J.; Zhou, C.; Hsu, S-J; Cheng, B., Unsteady aerodynamics of a pitching-flapping-perturbed revolving wing at low Reynolds number, Phys. Fluids, 30, 2018 · doi:10.1063/1.5024925
[22] Guo, S.; Li, H.; Zhou, C.; Zhang, YL; He, Y.; Wu, JH, Analysis and experiment of a bio-inspired flyable micro flapping wing rotor, Aerosp. Sci. Technol., 79, 506-517, 2018 · doi:10.1016/j.ast.2018.06.009
[23] Dong, X.; Li, D.; Xiang, J.; Wang, Z., Design and experimental study of a new flapping wing rotor micro aerial vehicle, Chin. J. Aeronaut., 33, 3092-3099, 2020 · doi:10.1016/j.cja.2020.04.024
[24] Shao, H.; Li, D.; Kan, Z.; Li, H.; Yuan, D.; Xiang, J., Influence of wing camber on aerodynamic performance of flapping wing rotor, Aerosp. Sci. Technol., 113, 2021 · doi:10.1016/j.ast.2021.106732
[25] Li, H.; Guo, S.; Zhang, YL; Zhou, C.; Wu, JH, Unsteady aerodynamic and optimal kinematic analysis of a micro flapping wing rotor, Aerosp. Sci. Technol., 63, 167-178, 2017 · doi:10.1016/j.ast.2016.12.025
[26] Chen, L.; Zhou, C., Linearized aerodynamic modeling of flapping rotary wings by rotating the leading-edge suction, AIAA J., 59, 5, 1884-1890, 2021 · doi:10.2514/1.J060230
[27] Pan, Y.; Guo, S.; Whidborne, J.; Huang, X., Aerodynamic performance of a flyable flapping wing rotor with dragonfly-like flexible wings, Aerosp. Sci. Technol., 148, 2024 · doi:10.1016/j.ast.2024.109090
[28] Li, H.; Guo, S., Aerodynamic efficiency of a bioinspired flapping wing rotor at low Reynolds number, R. Soc. Open Sci., 5, 2018 · doi:10.1098/rsos.171307
[29] Wu, J.; Chen, L.; Zhou, C.; Hsu, S-J; Cheng, B., Aerodynamics of a flapping-perturbed revolving wing, AIAA J., 57, 3728-3743, 2019 · doi:10.2514/1.J056584
[30] Sane, SP; Dickinson, MH, The control of flight force by a flapping wing: lift and drag production, J. Exp. Biol., 204, 2607-2626, 2001 · doi:10.1242/jeb.204.15.2607
[31] Sane, SP; Dickinson, MH, The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight, J. Exp. Biol., 205, 1087-1096, 2002 · doi:10.1242/jeb.205.8.1087
[32] Bayiz, Y.; Ghanaatpishe, M.; Fathy, H.; Cheng, B., Hovering efficiency comparison of rotary and flapping flight for rigid rectangular wings via dimensionless multi-objective optimization, Bioinspir. Biomim., 13, 2018 · doi:10.1088/1748-3190/aab801
[33] Bhat, SS; Zhao, J.; Sheridan, J.; Hourigan, K.; Thompson, MC, Evolutionary shape optimisation enhances the lift coefficient of rotating wing geometries, J. Fluid Mech., 868, 369-384, 2019 · Zbl 1415.76418 · doi:10.1017/jfm.2019.183
[34] Zhao, M.; Cao, H.; Zhang, M.; Liao, C.; Zhou, T., Optimal design of aeroacoustic airfoils with owl-inspired trailing-edge serrations, Bioinspir. Biomim., 16, 2021 · doi:10.1088/1748-3190/ac03bd
[35] Mirjalili, S.: Genetic algorithm. In: Evolutionary Algorithms and Neural Networks: Theory and Applications. Springer International Publishing, Cham. 780, 43-55, ISBN : 978-3-319-93024-4
[36] Lee, YJ; Lua, KB; Lim, TT; Yeo, KS, A quasi-steady aerodynamic model for flapping flight with improved adaptability, Bioinspir. Biomim., 11, 2016 · doi:10.1088/1748-3190/11/3/036005
[37] Zhou, C.; Chen, L.; Wu, J., Effects of timing and magnitude of wing stroke-plane tilt on the escape maneuverability of flapping wing, Bioinspir. Biomim., 16, 2020 · doi:10.1088/1748-3190/abb3b7
[38] Yi, S., Li, D., Z, J.: Design and experimental study of a new flapping wing rotor micro aerial vehicle. 2017 IEEE Int. Conf. Unmanned Syst. ICUS. Beijing, China. 29-33 (2017). doi:10.1109/ICUS.2017.8278312
[39] Chen, L.; Wang, L.; Wang, YQ, Efficient fluid-structure interaction model for twistable flapping rotary wings, AIAA J., 60, 6665-6679, 2022 · doi:10.2514/1.J061940
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.