×

The centre of the Dunkl total angular momentum algebra. (English) Zbl 07905965

Let \(V\) be a Euclidean space of dimension \(d\), \(W\) be a reflection group, \(R\) be its root system, \(t\neq 0\) and \(c: R\to \mathbb C\) a \(W\)-invariant parameter function. From this data, the rational Cherednik algebra \(H_{t,c}(V,W)\) can be defined. It is an associative algebra that admits a representation, called the Dunkl representation, defined by the multiplication operators, the Dunkl operators and the group algebra \(\mathbb C W\). Let \(\mathrm{Cl}(V)\) be the Clifford algebra on \(V\). There is a realisation of the Lie superalgebra \(\mathfrak{osp}(1|2)\) inside \(H_{t,c}(V,W)\otimes \mathrm{Cl}(V)\) [B. Ørsted, P. Somberg, V. Souček , Adv. Appl. Clifford Algebr. 19, No. 2, 403–415 (2009; Zbl 1404.17018)]. The Dunkl total angular momentum algebra, \(O_{t,c}(V,W)\) is the supercentraliser of a realisation of this Lie superalgebra \(\mathfrak{osp}(1|2)\) present in \(H_{t,c}(V,W)\otimes Cl(V)\) in the context of the Howe dual pair (\(\mathsf{Pin}(d),\mathfrak{osp}(1|2,\mathbb C)\)).
The generators of the Dunkl total angular momentum algebra were given, in a slightly more general context, in [H. De Bie, R. Oste, J. Van der Jeugt, Lett. Math. Phys. 108, No. 8, 1905–1953 (2018; Zbl 1397.81085)]. The total ideal of relations of this algebra is still not completely known.
The main result of the work under review is the characterisation of the (graded) centre of the algebra \(O_{t,c}(V,W)\) for \(d\geq 3\). It is a univariate polynomial ring whose generator has its expression depends on whether the longest element of the (real) reflection group is \(-1\) (in the realisation \(V\)) or not.
Representation of \(O_{t,c}(V,W)\) are related to the spin representation of \(W\), that is the representations of the double covering \(\widetilde{W}\) that are not equivalent to those of the representation of \(W\). Building from the results on the centre, the authors relate the centres of \(O_{t,c}(V,W)\) and \(\mathbb C \widetilde{W}_-\). This allows them to define a cohomology and to build results à la Vogan, in an analogous fashion to [D. Ciubotaru, Sel. Math., New Ser. 22, No. 1, 111–144 (2016; Zbl 1383.20007)]).

MSC:

16S80 Deformations of associative rings
17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
20F55 Reflection and Coxeter groups (group-theoretic aspects)
81R12 Groups and algebras in quantum theory and relations with integrable systems

References:

[1] Barbasch, D.; Ciubotaru, D.; Trapa, P. E., Dirac cohomology for graded affine Hecke algebras, Acta Math., 209, 2, 197-227, 2012 · Zbl 1276.20004
[2] Bellamy, G.; Feigin, M.; Hird, N., Two invariant subalgebras of rational Cherednik algebras, 2023, preprint
[3] Brackx, F.; De Schepper, H.; Eelbode, D.; Souček, V., The Howe dual pair in Hermitean Clifford analysis, Rev. Mat. Iberoam., 26, 2, 449-479, 2010 · Zbl 1201.30061
[4] Calvert, K., Dirac cohomology, the projective supermodules of the symmetric group and the Vogan morphism, Q. J. Math., 70, 2, 535-563, 2019 · Zbl 1479.20014
[5] Calvert, K., Dirac cohomology of the Dunkl-Opdam subalgebra via inherited Drinfeld properties, Commun. Algebra, 48, 4, 1476-1498, 2020 · Zbl 1471.20003
[6] Calvert, K.; De Martino, M., Dirac operators for the Dunkl angular momentum algebra, SIGMA, 18, 040, 1-18, 2022 · Zbl 1492.16024
[7] Chan, K. Y., Dirac cohomology for degenerate affine Hecke-Clifford algebras, Transform. Groups, 22, 1, 125-162, 2017 · Zbl 1404.20003
[8] Cheng, S.-J.; Kwon, J.-H.; Wang, W., Kostant homology formulas for oscillator modules of Lie superalgebras, Adv. Math., 224, 4, 1548-1588, 2010 · Zbl 1210.17026
[9] Cheng, S.-J.; Wang, W., Dualities and Representations of Lie Superalgebras, Graduate Studies in Mathematics, vol. 144, 2012, American Mathematical Society: American Mathematical Society Providence, RI · Zbl 1271.17001
[10] Ciubotaru, D., Dirac cohomology for symplectic reflection algebras, Sel. Math., 22, 1, 111-144, 2016 · Zbl 1383.20007
[11] Ciubotaru, D.; De Martino, M., Dirac induction for rational Cherednik algebras, Int. Math. Res. Not., 2020, 17, 5155-5214, 2020 · Zbl 1461.58009
[12] Ciubotaru, D.; De Martino, M., The Dunkl-Cherednik deformation of a Howe duality, J. Algebra, 560, 15, 914-959, 2020 · Zbl 1475.16031
[13] De Bie, H.; Genest, V. X.; Vinet, L., The \(\mathbb{Z}_2^n\) Dirac-Dunkl operator and a higher rank Bannai-Ito algebra, Adv. Math., 303, 390-414, 2016 · Zbl 1348.81253
[14] De Bie, H.; Langlois-Rémillard, A.; Oste, R.; Van der Jeugt, J., Finite-dimensional representations of the symmetry algebra of the dihedral Dunkl-Dirac operator, J. Algebra, 591, 170-216, 2022 · Zbl 1498.16037
[15] De Bie, H.; Ørsted, B.; Somberg, P.; Souček, V., Dunkl operators and a family of realizations of \(\mathfrak{osp}(1 | 2)\), Trans. Am. Math. Soc., 364, 7, 3875-3902, 2012 · Zbl 1276.33021
[16] De Bie, H.; Oste, R.; Van der Jeugt, J., On the algebra of symmetries of Laplace and Dirac operators, Lett. Math. Phys., 108, 8, 1905-1953, 2018 · Zbl 1397.81085
[17] De Bie, H.; Oste, R.; Van der Jeugt, J., The total angular momentum algebra related to the \(\operatorname{S}_3\) Dunkl Dirac equation, Ann. Phys., 389, 192-218, 2018 · Zbl 1384.81024
[18] Dunkl, C. F., Differential-difference operators associated to reflection groups, Trans. Am. Math. Soc., 311, 1, 167-183, 1989 · Zbl 0652.33004
[19] Dunkl, C. F.; Opdam, E. M., Dunkl operators for complex reflection groups, Proc. Lond. Math. Soc., 86, 1, 70-108, 2003 · Zbl 1042.20025
[20] Etingof, P.; Ginzburg, V., Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism, Invent. Math., 147, 2, 243-348, 2002 · Zbl 1061.16032
[21] Feigin, M.; Hakobyan, T., On Dunkl angular momenta algebra, J. High Energy Phys., 2015, 11, 1-23, 2015
[22] Feigin, M.; Hakobyan, T., Algebra of Dunkl Laplace-Runge-Lenz vector, Lett. Math. Phys., 112, 3, 1-29, 2022 · Zbl 1492.81063
[23] Frappat, L.; Sciarrino, A.; Sorba, P., Dictionary on Lie Algebras and Superalgebras, 2000, Academic Press, Inc.: Academic Press, Inc. San Diego, CA · Zbl 0965.17001
[24] Goodman, R.; Wallach, N., Symmetry, Representations, and Invariants, vol. 255, 2009, Springer · Zbl 1173.22001
[25] Griffeth, S., Towards a combinatorial representation theory for the rational Cherednik algebra of type \(G(r, p, n)\), Proc. Edinb. Math. Soc., 53, 2, 419-445, 2010 · Zbl 1227.05265
[26] Heckman, G. J., A remark on the Dunkl differential—difference operators, (Harmonic Analysis on Reductive Groups, 1991, Springer), 181-191 · Zbl 0749.33005
[27] Howe, R., Remarks on classical invariant theory, Trans. Am. Math. Soc., 313, 2, 539-570, 1989 · Zbl 0674.15021
[28] Huang, J.-S.; Pandžić, P., Dirac cohomology, unitary representations and a proof of a conjecture of Vogan, J. Am. Math. Soc., 15, 1, 185-202, 2002 · Zbl 0980.22013
[29] Nishiyama, K., Decomposing oscillator representations of \(\mathfrak{o} \mathfrak{s} \mathfrak{p}(2 n / n; \mathbf{R})\) by a super dual pair \(\mathfrak{o} \mathfrak{s} \mathfrak{p}(2 / 1; \mathbf{R}) \times \mathfrak{s} \mathfrak{o}(n)\), Compos. Math., 80, 2, 137-149, 1991 · Zbl 0741.17002
[30] Ørsted, B.; Somberg, P.; Souček, V., The Howe duality for the Dunkl version of the Dirac operator, Adv. Appl. Clifford Algebras, 19, 2, 403-415, 2009 · Zbl 1404.17018
[31] Oste, R., Supercentralizers for deformations of the pin osp dual pair, 2021, preprint
[32] Procesi, C., Lie Groups. An approach through invariants and representations, Universitext, 2007, Springer: Springer New York · Zbl 1154.22001
[33] Saïd, S. B.; Ørsted, B., Segal-Bargmann transforms associated with Coxeter groups, Math. Ann., 334, 281-323, 2006 · Zbl 1109.33015
[34] Schur, J., Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen, 1911, Walter de Gruyter: Walter de Gruyter Berlin/New York, Berlin, New York · JFM 42.0154.02
[35] Stembridge, J. R., Shifted tableaux and the projective representations of symmetric groups, Adv. Math., 74, 1, 87-134, 1989 · Zbl 0677.20012
[36] Vershik, A. M.; Sergeev, A. N., A new approach to the representation theory of the symmetric groups. IV. \( \mathbb{Z}_2\)-graded groups and algebras: projective representations of the group \(S_n\), Mosc. Math. J., 8, 4, 813-842, 2008 · Zbl 1196.20017
[37] D.A. Vogan Jr., Lectures on the Dirac operator i-iii. M.I.T., unpublished notes, 1997.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.