×

Comparison of approximate analytical and numerical solutions of the Allen Cahn equation. (English) Zbl 07905674

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
35C07 Traveling wave solutions
35K55 Nonlinear parabolic equations
35A20 Analyticity in context of PDEs
80A22 Stefan problems, phase changes, etc.

References:

[1] Allen, M.; Cahn, J. W., A microscopic theory for antiphase boundary motion and its application to its applicationto antiphase domain coarsening, Acta Metallurgica et Materialia, 27, 1979 · doi:10.1016/0001-6160(79)90196-2
[2] Shah, A.; Sabir, M.; Bastian, P., An efficient time-stepping scheme for numerical simulation of dendritic crystal growth, European Journal of Computational Mechanics, 25, 6, 475-488, 2016 · doi:10.1080/17797179.2016.1276395
[3] Benes, M.; Chalupecký, V.; Mikula, K., Geometrical image segmentation by the Allen-Cahn equation, Applied Numerical Mathematics, 51, 2-3, 187-205, 2004 · Zbl 1055.94502 · doi:10.1016/j.apnum.2004.05.001
[4] Chodosh, O.; Mantoulidis, C., Minimal surfaces and the Allen-Cahn equation on 3-manifolds: index, multiplicity, and curvature estimates, Annals of Mathematics, 191, 1, 2020 · Zbl 1431.49045 · doi:10.4007/annals.2020.191.1.4
[5] Liu, C.; Shen, J., A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-Spectral method, Physica D: Nonlinear Phenomena, 179, 3-4, 211-228, 2003 · Zbl 1092.76069 · doi:10.1016/S0167-2789(03)00030-7
[6] Jeong, D.; Kim, J., Conservative Allen-Cahn-Navier-Stokes system for incompressible two-phase fluid flows, Computers & Fluids, 156, 239-246, 2017 · Zbl 1390.76577 · doi:10.1016/j.compfluid.2017.07.009
[7] Chen, L. Q., Phase-field models for microstructure evolution, Annual Review of Materials Research, 32, 1, 113-140, 2002 · doi:10.1146/annurev.matsci.32.112001.132041
[8] Tascan, F.; Bekir, A., Travelling wave solutions of the Cahn-Allen equation by using first integral method, Applied Mathematics and Computation, 207, 1, 279-282, 2009 · Zbl 1162.35304 · doi:10.1016/j.amc.2008.10.031
[9] Wazwaz, A.-M., The tanh-coth method for solitons and kink solutions for nonlinear parabolic equations, Applied Mathematics and Computation, 188, 2, 1467-1475, 2007 · Zbl 1119.65100 · doi:10.1016/j.amc.2006.11.013
[10] Tariq, H.; Akram, G., New traveling wave exact and approximate solutions for the nonlinear Cahn-Allen equation: evolution of a nonconserved quantity, Nonlinear Dynamics, 88, 581-594, 2017 · Zbl 1373.35335 · doi:10.1007/s11071-016-3262-7
[11] Jeong, D.; Lee, S.; Lee, D.; Shin, J.; Kim, J., Comparison study of numerical methods for solving the Allen-Cahn equation, Computational Materials Science, 111, 131-136, 2016 · doi:10.1016/j.commatsci.2015.09.005
[12] Gui, C.; Zhao, M., Traveling wave solutions of Allen-Cahn equation with a fractional Laplacian, Annales de l’Institut Henri Poincare (C) Non Linear Analysis, 32, 2014 · Zbl 1326.35068 · doi:10.1016/j.anihpc.2014.03.005
[13] Jeong, D.; Kim, J., An explicit hybrid finite difference scheme for the Allen-Cahn equation, Journal of Computational and Applied Mathematics, 340, 247-255, 2018 · Zbl 1432.65121 · doi:10.1016/j.cam.2018.02.026
[14] Shah, A.; Sabir, M.; Qasim, M.; Bastian, P., Efficient numerical scheme for solving the Allen-Cahn equation, Numerical Methods for Partial Differential Equations, 34, 5, 1820-1833, 2018 · Zbl 1407.65130 · doi:10.1002/num.22255
[15] Yokus, A.; Bulut, H., On the numerical investigations to the Cahn-Allen equation by using finite difference method, An International Journal of Optimization and Control: Theories & Applications, 9, 1, 18-23, 2018 · doi:10.11121/ijocta.01.2019.00561
[16] Shin, J.; Park, S.-K.; Kim, J., A hybrid FEM for solving the Allen-Cahn equation, Applied Mathematics and Computation, 244, 606-612, 2014 · Zbl 1336.65170 · doi:10.1016/j.amc.2014.07.040
[17] Bulut, H., Application of the modified exponential function method to the Cahn-Allen equation, AIP Conference Proceedings, 1798, 2017 · doi:10.1063/1.4972625
[18] He, J. H., A coupling method of a homotopy technique and a perturbation technique for non-linear problems, International Journal of Non-linear Mechanics, 35, 1, 37, 2000 · Zbl 1068.74618 · doi:10.1016/S0020-7462(98)00085-7
[19] He, J.-H., Homotopy perturbation method for solving boundary value problems, Physics Letters A, 350, 1-2, 87-88, 2006 · Zbl 1195.65207 · doi:10.1016/j.physleta.2005.10.005
[20] Liao, S. J., The Proposed Homotopy Snalysis Technique for the Solution of Nonlinear Problems, 1992, Shanghai, China: Shanghai Jiao Tong University, Shanghai, China, Ph.D. thesis
[21] Liao, S. J., Beyond Perturbation: Introduction to the Homotopy Analysis Method, 2003, Boca Raton, FL, USA: CRC Press, Boca Raton, FL, USA
[22] Liao, S. J., Comparison between the homotopy analysis method and homotopy perturbation method, Applied Mathematics and Computation, 169, 2, 1186-1194, 2005 · Zbl 1082.65534 · doi:10.1016/j.amc.2004.10.058
[23] He, J. H., Variational iteration method—some recent results and new interpretations, Journal of Computational and Applied Mathematics, 207, 1, 3-17, 2007 · Zbl 1119.65049 · doi:10.1016/j.cam.2006.07.009
[24] Wazwaz, A. M., The variational iteration method for rational solutions for KdV, K(2,2), Burgers, and cubic Boussinesq equations, Journal of Computational and Applied Mathematics, 207, 1, 18-23, 2007 · Zbl 1119.65102 · doi:10.1016/j.cam.2006.07.010
[25] Wazwaz, A. M., The variational iteration method: a reliable analytic tool for solving linear and nonlinear wave equations, Computers & Mathematics with Applications, 54, 7-8, 926-932, 2007 · Zbl 1141.65388 · doi:10.1016/j.camwa.2006.12.038
[26] Adomian, G., Solving Frontier Problems of Physics: The Decomposition Method, 1994, London, UK: Kluwer Academic Publishers, London, UK · Zbl 0802.65122
[27] Adomian, G., A review of the decomposition method in applied mathematics, Journal of Mathematical Analysis and Applications, 135, 2, 501-544, 1988 · Zbl 0671.34053 · doi:10.1016/0022-247X(88)90170-9
[28] Li, W.; Pang, Y., Application of Adomian decomposition method to nonlinear systems, Advances in Differential Equations, 2020, 1, 67, 2020 · Zbl 1482.65200 · doi:10.1186/s13662-020-2529-y
[29] Zhou, J. K., Differential Transformation and its Applications for Electrical Circuits, 1986, Wuhan, China: Huazhong University Press, Wuhan, China
[30] Zaid, M., Odibat, Differential transform method for solving Volterra integral equation with separable kernels, Mathematical and Computer Modelling, 7, 8, 1144-1149, 2008 · Zbl 1187.45003 · doi:10.1016/j.mcm.2007.12.022
[31] Benhammouda, B.; Vazquez-Leal, H., A New Multi-step Technique with Differential Transform Method for Analytical Solution of Some Nonlinear Variable Delay Differential Equations, 2016, Berlin, Germany: Springer Plus, Berlin, Germany
[32] Antczak, T.; Arana-Jimenez, M., Optimality and duality results for new classes of nonconvex quasidifferentiable vector optimization problems, Applied and Computational Mathematics, 21, 1, 21-34, 2022 · Zbl 1506.90238
[33] Malfliet, W., The tanh method: a tool for solving certain classes of nonlinear evolution and wave equations, Journal of Computational and Applied Mathematics, 164-165, 529-541, 2004 · Zbl 1038.65102 · doi:10.1016/S0377-0427(03)00645-9
[34] Ali, K.; Khalid; Mehanna, M. A.; Ali, P. M., Approach to a (2+1)-dimensional time-dependent date-jimbo-kashiwara-miwa equation in real physical phenomena, Applied and Computational Mathematics, 21, 193-206, 2022 · Zbl 1510.35098 · doi:10.30546/1683-6154.21.2.2022.193
[35] Qi, F., Necessary and sufficient conditions for a difference defined by four derivatives of a function containing trigamma function to be completely monotonic, Applied and Computational Mathematics, 21, 1, 61-70, 2022 · Zbl 1508.26011
[36] Kucukoglu, I.; Simsek, Y., Formulas and combinatorial identities for Catalan-type numbers and polynomials: their analysis with computational algorithms, Applied and Computational Mathematics, 21, 2, 158-177, 2022 · Zbl 1514.05020
[37] Rufai, M. A.; Shokri, A.; Omole, E. O., A one-point third derivative hybrid multistep technique for solving second-order oscillatory and periodic problems, Journal of Mathematics, 2023, 2023 · doi:10.1155/2023/2343215
[38] Juraev, D. A.; Shokri, A.; Marian, D., Regularized solution of the Cauchy problem in an unbounded domain, Symmetry, 14, 8, 1682, 2022 · doi:10.3390/sym14081682
[39] Shokri, A.; Shokri, A., The new class of implicit L-stable hybrid Obrechkoff method for the numerical solution of first order initial value problems, Computer Physics Communications, 184, 3, 529-531, 2013 · Zbl 1314.65098 · doi:10.1016/j.cpc.2012.09.035
[40] A Almatrafi, M., New soliton wave solutions to a nonlinear equation arising in plasma physics, Computer Modeling in Engineering and Sciences, 137, 1-15, 2023 · doi:10.32604/cmes.2023.027344
[41] Antczak, T., On optimality conditions and duality results in a class of nonconvex quasidifferentiable optimization problems, Computational and Applied Mathematics, 36, 3, 1299-1314, 2017 · Zbl 1370.90185 · doi:10.1007/s40314-015-0283-7
[42] Almatrafi, M. B., Abundant traveling wave and numerical solutions for Novikov-Veselov system with their stability and accuracy, Applicable Analysis, 102, 8, 2389-2402, 2023 · Zbl 1517.65100 · doi:10.1080/00036811.2022.2027381
[43] Abassy, T. A., Modified variational iteration method (non-homogeneous initial value problem), Mathematical and Computer Modelling, 55, 3-4, 1222-1232, 2012 · Zbl 1255.65187 · doi:10.1016/j.mcm.2011.10.002
[44] Abassy, T. A.; El-Tawil, M. A.; El Zoheiry, H., Toward a modified variational iteration method, Journal of Computational and Applied Mathematics, 207, 1, 137-147, 2007 · Zbl 1119.65096 · doi:10.1016/j.cam.2006.07.019
[45] He, W.; Kong, H.; Qin, Y. M., Modified variational iteration method for analytical solutions of nonlinear oscillators, Journal of Low Frequency Noise, Vibration and Active Control, 38, 3-4, 1178-1183, 2019 · doi:10.1177/1461348418784817
[46] Sinha, V. K.; Maroju, P., New development of variational iteration method using quasilinearization method for solving nonlinear problems, Mathematics, 11, 4, 935, 2023 · doi:10.3390/math11040935
[47] Iskandarov, S.; Komartsova, E., On the influence of integral perturbations on the boundedness of solutions of a fourth-order linear differential equation, TWMS Journal of Pure and Applied Mathematics, 13, 1, 3-9, 2022 · Zbl 07794369
[48] Hamidov, S. I., Optimal trajectories in reproduction models of economic dynamics, TWMS Journal of Pure and Applied Mathematics, 13, 1, 16-24, 2022 · Zbl 1538.91034
[49] Akbay, A.; Turgay, N.; Ergüt, M., On space-like generalized constant ratio hypersufaces in minkowski spaces, TWMS Journal of Pure and Applied Mathematics, 13, 1, 25-37, 2022 · Zbl 1538.53083
[50] Almatrafi, M. B., Solitary wave solutions to a fractional model using the improved modified extended tanh-function method, Fractal and Fractional, 7, 3, 252, 2023 · doi:10.3390/fractalfract7030252
[51] Choi, J. W.; Lee, H. G.; Jeong, D.; Kim, J., An unconditionally gradient stable numerical method for solving the Allen-Cahn equation, Physica A: Statistical Mechanics and Its Applications, 388, 9, 1791-1803, 2009 · doi:10.1016/j.physa.2009.01.026
[52] Samaee, S. S.; Yazdanpanah, O.; Ganji, D. D.; Davood, New approaches to identification of the Lagrange multiplier in the variational iteration method, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 37, 3, 937-944, 2014 · doi:10.1007/s40430-014-0214-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.