×

Kernel multi-granularity double-quantitative rough set based on ensemble empirical mode decomposition: application to stock price trends prediction. (English) Zbl 07905197

Summary: As financial markets grow increasingly complex and dynamic, accurately predicting stock price trends becomes crucial for investors and financial analysts. Effectively identifying and selecting the most predictive attributes has become a challenge in stock trends prediction. To address this problem, this study proposes a new attribute reduction model. A rough set theory model is built by simplifying the prediction process and combining it with the long short-term memory network (LSTM) to enhance the accuracy of stock trends prediction. Firstly, the Ensemble Empirical Mode Decomposition (EEMD) is utilized to decompose the stock price data into a multi-granularity information system. Secondly, due to the numerical characteristics of stock data, a kernel function is applied to construct binary relationships. Thirdly, recognizing the noise inherent in stock data, the double-quantitative rough set theory is utilized to improve fault tolerance during the construction of decision attributes’ lower and upper approximations. Moreover, calculate the correlation between conditional and decision attributes, and retain highly correlated conditional attributes for prediction. The kernel multi-granularity double-quantitative rough set based on the EEMD (EEMD-KMGDQRS) model proposed identifies the key factors behind stock data. Finally, the efficacy of the proposed model is validated by selecting 356 stocks from diverse industries in the Shanghai and Shenzhen stock markets as experimental samples. The results show that the proposed model improves the generalization of attribute reduction results through a fault tolerance mechanism by combining kernel function with multi-granularity double-quantitative rough set, thereby enhancing the accuracy of stock trends prediction in subsequent LSTM prediction processes.

MSC:

62-XX Statistics
Full Text: DOI

References:

[1] Li, Q.; Chen, Y.; Jiang, L.; Li, P.; Chen, H., A tensor-based information framework for predicting the stock market, ACM Trans. Inf. Syst., 34, 1-30, 2016
[2] Ma, Y.; Mao, R.; Lin, Q.; Wu, P.; Cambria, E., Multi-source aggregated classification for stock price movement prediction, Inf. Fusion, 91, 515-528, 2023
[3] Bollerslev, T., Generalized autoregressive conditional heteroskedasticity, J. Econom., 31, 307-327, 1986 · Zbl 0616.62119
[4] Pai, P.; Lin, C., A hybrid ARIMA and support vector machines model in stock price forecasting, Omega, 33, 497-505, 2005
[5] Hansen, P. R.; Huang, Z., Exponential GARCH modeling with realized measures of volatility, J. Bus. Econ. Stat., 34, 269-287, 2016
[6] Lu, L.; Lei, Y.; Yang, Y.; Zheng, H.; Wang, W.; Meng, Y.; Meng, C.; Zha, L., Assessing nickel sector index volatility based on quantile regression for Garch and Egarch models: evidence from the Chinese stock market 2018-2022, Resour. Policy, 82, Article 103563 pp., 2023
[7] Liu, J.; Wang, P.; Chen, H.; Zhu, J., A combination forecasting model based on hybrid interval multi-scale decomposition: application to interval-valued carbon price forecasting, Expert Syst. Appl., 191, Article 116267 pp., 2022
[8] Cui, C.; Li, X.; Zhang, C.; Guan, W.; Wang, M., Temporal-relational hypergraph tri-attention networks for stock trend prediction, Pattern Recognit., 143, Article 109759 pp., 2023
[9] Behera, J.; Pasayat, A. K.; Behera, H.; Kumar, P., Prediction based mean-value-at-risk portfolio optimization using machine learning regression algorithms for multi-national stock markets, Eng. Appl. Artif. Intell., 120, Article 105843 pp., 2023
[10] Bisoi, R.; Dash, P.; Parida, A., Hybrid variational mode decomposition and evolutionary robust kernel extreme learning machine for stock price and movement prediction on daily basis, Appl. Soft Comput., 74, 652-678, 2019
[11] Beniwal, M.; Singh, A.; Kumar, N., Forecasting long-term stock prices of global indices: a forward-validating genetic algorithm optimization approach for support vector regression, Appl. Soft Comput., 145, Article 110566 pp., 2023
[12] Kanwal, A.; Lau, M. F.; Ng, S. P.; Sim, K. Y.; Chandrasekaran, S., BiCuDNNLSTM-1dCNN — a hybrid deep learning-based predictive model for stock price prediction, Expert Syst. Appl., 202, Article 117123 pp., 2022
[13] Gülmez, B., Stock price prediction with optimized deep LSTM network with artificial rabbits optimization algorithm, Expert Syst. Appl., 227, Article 120346 pp., 2023
[14] Md, A. Q.; Kapoor, S.; Junni, C.; Sivaraman, A. K.; Tee, K. F.; Sabireen, H.; Janakiraman, N., Novel optimization approach for stock price forecasting using multi-layered sequential LSTM, Appl. Soft Comput., 134, Article 109830 pp., 2023
[15] Wang, J.; Zhu, S., A novel stock index direction prediction based on dual classifier coupling and investor sentiment analysis, Cogn. Comput., 15, 1023-1041, 2023
[16] Akhtar, M. M.; Zamani, A. S.; Khan, S.; Shatat, A. S.A.; Dilshad, S.; Samdani, F., Stock market prediction based on statistical data using machine learning algorithms, J. King Saud Univ., Sci., 34, Article 101940 pp., 2022
[17] Wang, X.; Gao, X.; Wu, T.; Sun, X., Dynamic multiscale analysis of causality among mining stock prices, Resour. Policy, 77, Article 102708 pp., 2022
[18] Zhao, X.; Sun, B.; Geng, R., A new distributed decomposition-reconstruction-ensemble learning paradigm for short-term wind power prediction, J. Clean. Prod., 423, Article 138676 pp., 2023
[19] Huang, N. E.; Shen, Z.; Long, S. R.; Wu, M. C.; Shih, H. H.; Zheng, Q.; Yen, N.-C.; Tung, C. C.; Liu, H. H., The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., 454, 903-995, 1998 · Zbl 0945.62093
[20] Wu, Z.; Huang, N. E., Ensemble empirical mode decomposition: a noise-assisted data analysis method, Adv. Adapt. Data Anal., 1, 1-41, 2009
[21] Rehman, N.; Mandic, D. P., Multivariate empirical mode decomposition, Proc., Math. Phys. Eng. Sci., 466, 1291-1302, 2010 · Zbl 1191.94049
[22] Rehman, N. U.; Aftab, H., Multivariate variational mode decomposition, IEEE Trans. Signal Process., 67, 6039-6052, 2019 · Zbl 07160278
[23] Bai, J.; Sun, B.; Chu, X.; Wang, T.; Li, H.; Huang, Q., Neighborhood rough set-based multi-attribute prediction approach and its application of gout patients, Appl. Soft Comput., 114, Article 108127 pp., 2022
[24] Guo, Y.; Guo, J.; Sun, B.; Bai, J.; Chen, Y., A new decomposition ensemble model for stock price forecasting based on system clustering and particle swarm optimization, Appl. Soft Comput., 130, Article 109726 pp., 2022
[25] Venkateswararao, K.; Reddy, B. V.R., LT-SMF: long term stock market price trend prediction using optimal hybrid machine learning technique, Artif. Intell. Rev., 56, 5365-5402, 2023
[26] Pawlak, Z., Rough sets, Int. J. Comput. Inf. Sci., 11, 341-356, 1982 · Zbl 0501.68053
[27] Wang, C.; Wang, Y.; Shao, M.; Qian, Y.; Chen, D., Fuzzy rough attribute reduction for categorical data, IEEE Trans. Fuzzy Syst., 28, 818-830, 2020
[28] Xie, J.; Hu, B. Q.; Jiang, H., A novel method to attribute reduction based on weighted neighborhood probabilistic rough sets, Int. J. Approx. Reason., 144, 1-17, 2022 · Zbl 07512022
[29] Qian, Y.; Liang, J.; Yao, Y.; Dang, C., MGRS: a multi-granulation rough set, Inf. Sci., 180, 949-970, 2010 · Zbl 1185.68695
[30] Qian, Y.; Li, S.; Liang, J.; Shi, Z.; Wang, F., Pessimistic rough set based decisions: a multigranulation fusion strategy, Inf. Sci., 264, 196-210, 2014 · Zbl 1335.68270
[31] Sun, B.; Tong, S.; Ma, W.; Wang, T.; Jiang, C., An approach to MCGDM based on multi-granulation Pythagorean fuzzy rough set over two universes and its application to medical decision problem, Artif. Intell. Rev., 55, 1887-1913, 2022
[32] Ye, J.; Sun, B.; Zhan, J.; Chu, X., Variable precision multi-granulation composite rough sets with multi-decision and their applications to medical diagnosis, Inf. Sci., 615, 293-322, 2022 · Zbl 1536.90102
[33] Lin, G.; Xie, L.; Li, J.; Chen, J.; Kou, Y., Local double quantitative fuzzy rough sets over two universes, Appl. Soft Comput., 145, Article 110556 pp., 2023
[34] Ziarko, W., Variable precision rough set model, J. Comput. Syst. Sci., 46, 39-59, 1993 · Zbl 0764.68162
[35] Yao, Y.; Lin, T., Generalization of rough sets using modal logics, Intell. Autom. Soft Comput., 2, 103-119, 1996
[36] Zhang, X.; Miao, D., Two basic double-quantitative rough set models of precision and grade and their investigation using granular computing, Int. J. Approx. Reason., 54, 1130-1148, 2013 · Zbl 1316.68201
[37] Sang, B.; Yang, L.; Chen, H.; Xu, W.; Guo, Y.; Yuan, Z., Generalized multi-granulation double-quantitative decision-theoretic rough set of multi-source information system, Int. J. Approx. Reason., 115, 157-179, 2019 · Zbl 1468.68240
[38] Ye, J.; Sun, B.; Bai, J.; Bao, Q.; Chu, X.; Bao, K., A preference-approval structure-based non-additive three-way group consensus decision-making approach for medical diagnosis, Inf. Fusion, 101, Article 102008 pp., 2024
[39] An, S.; Guo, X.; Wang, C.; Guo, G.; Dai, J., A soft neighborhood rough set model and its applications, Inf. Sci., 624, 185-199, 2023 · Zbl 07840243
[40] Liu, K.; Li, T.; Yang, X.; Ju, H.; Yang, X.; Liu, D., Feature selection in threes: neighborhood relevancy, redundancy, and granularity interactivity, Appl. Soft Comput., 146, Article 110679 pp., 2023
[41] Gou, H.; Zhang, X.; Yang, J.; Lv, Z., Three-way fusion measures and three-level feature selections based on neighborhood decision systems, Appl. Soft Comput., 148, Article 110842 pp., 2023
[42] Pei, W.; Xue, B.; Shang, L.; Zhang, M., Detecting overlapping areas in unbalanced high-dimensional data using neighborhood rough set and genetic programming, IEEE Trans. Evol. Comput., 27, 1130-1144, 2023
[43] Li, W.; Zhou, H.; Xu, W.; Wang, X.-Z.; Pedrycz, W., Interval dominance-based feature selection for interval-valued ordered data, IEEE Trans. Neural Netw. Learn. Syst., 34, 6898-6912, 2023
[44] Yu, B.; Zheng, Z.; Xiao, Z.; Fu, Y.; Xu, Z., A large-scale group decision-making method based on group-oriented rough dominance relation in scenic spot service improvement, Expert Syst. Appl., 233, Article 120999 pp., 2023
[45] Hu, Z.; Shao, M.; Wu, W.; Li, L., Knowledge acquisition of multi-granularity ordered information systems, Appl. Soft Comput., 146, Article 110674 pp., 2023
[46] Zhou, H.; Li, W.; Zhang, C.; Zhan, T., Dynamic maintenance of updating rough approximations in interval-valued ordered decision systems, Appl. Intell., 53, 22161-22178, 2023
[47] Sang, B.; Yang, L.; Chen, H.; Xu, W.; Zhang, X., Fuzzy rough feature selection using a robust non-linear vague quantifier for ordinal classification, Expert Syst. Appl., 230, Article 120480 pp., 2023
[48] Xu, W.; Pan, Y.; Chen, X.; Ding, W.; Qian, Y., A novel dynamic fusion approach using information entropy for interval-valued ordered datasets, IEEE Trans. Big Data, 9, 845-859, 2023
[49] Jiang, H.; Wang, G.; Liu, Q.; Gao, P.; Huang, X., Hierarchical multi-uavs task assignment based on dominance rough sets, Appl. Soft Comput., 143, Article 110445 pp., 2023
[50] Yang, X.; Chen, H.; Li, T.; Zhang, P.; Luo, C., Student-t kernelized fuzzy rough set model with fuzzy divergence for feature selection, Inf. Sci., 610, 52-72, 2022 · Zbl 07825438
[51] Liang, P.; Lei, D.; Chin, K.; Hu, J., Feature selection based on robust fuzzy rough sets using kernel-based similarity and relative classification uncertainty measures, Knowl.-Based Syst., 255, Article 109795 pp., 2022
[52] Wang, T.; Sun, B.; Jiang, C., Kernel similarity-based multigranulation three-way decision approach to hypertension risk assessment with multi-source and multi-level structure data, Appl. Soft Comput., 144, Article 110470 pp., 2023
[53] Wang, T.; Sun, B.; Jiang, C., Kernelized multi-granulation fuzzy rough set over hybrid attribute decision system and application to stroke risk prediction, Appl. Intell., 53, 24876-24894, 2023
[54] Wang, T.; Sun, B.; Jiang, C.; Weng, H.; Chu, X., Kernel alignment-based three-way clustering on attribute space and its application in stroke risk identification, Int. J. Mach. Learn. Cybern., 13, 1697-1711, 2022
[55] Bai, J.; Guo, J.; Sun, B.; Guo, Y.; Bao, Q.; Xiao, X., Intelligent forecasting model of stock price using neighborhood rough set and multivariate empirical mode decomposition, Eng. Appl. Artif. Intell., 122, Article 106106 pp., 2023
[56] Ko, Y.-C.; Fujita, H., Evidential probability of signals on a price herd predictions: case study on solar energy companies, Int. J. Approx. Reason., 92, 255-269, 2018 · Zbl 1426.91268
[57] Hu, Q.; Zhang, L.; Chen, D.; Pedrycz, W.; Yu, D., Gaussian kernel based fuzzy rough sets: model, uncertainty measures and applications, Int. J. Approx. Reason., 51, 453-471, 2010 · Zbl 1205.68424
[58] Lin, C.; Zhu, D., Stock market forecasting research based on Elman neural network, J. Comput. Appl., 2, 476-478, 2006
[59] Hochreiter, S.; Schmidhuber, J., Long short-term memory, Neural Comput., 9, 1735-1780, 1997
[60] Liang, J.; Wang, F.; Dang, C.; Qian, Y., An efficient rough feature selection algorithm with a multi-granulation view, Int. J. Approx. Reason., 53, 912-926, 2012
[61] Feng, F.; Chen, H.; He, X.; Ding, J.; Sun, M.; Chua, T.-S., Enhancing stock movement prediction with adversarial training, (Proceedings of the 28th International Joint Conference on Artificial Intelligence, 2018), 5843-5849
[62] Ying, Z.; Cheng, D.; Chen, C.; Li, X.; Zhu, P.; Luo, Y.; Liang, Y., Predicting stock market trends with self-supervised learning, Neurocomputing, 568, Article 127033 pp., 2024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.