×

Constructing non-abelian quantum spin liquids using combinatorial gauge symmetry. (English) Zbl 07905002

Summary: We construct Hamiltonians with only 1- and 2-body interactions that exhibit an exact non-Abelian gauge symmetry (specifically, combinatiorial gauge symmetry). Our spin Hamiltonian realizes the quantum double associated to the group of quaternions. It contains only ferromagnetic and anti-ferromagnetic \(ZZ\) interactions, plus longitudinal and transverse fields, and therefore is an explicit example of a spin Hamiltonian with no sign problem that realizes a non-Abelian topological phase. In addition to the spin model, we propose a superconducting quantum circuit version with the same symmetry.

MSC:

81Pxx Foundations, quantum information and its processing, quantum axioms, and philosophy
82Bxx Equilibrium statistical mechanics
81Sxx General quantum mechanics and problems of quantization

References:

[1] J. Fröhlich, Statistics of fields, the Yang-Baxter equation, and the theory of knots and links, in Nonperturbative quantum field theory, Springer, Boston, USA, ISBN 9781461280538 (1988), doi:10.1007/978-1-4613-0729-7_4. · doi:10.1007/978-1-4613-0729-7_4
[2] E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121, 351 (1989), doi:10.1007/BF01217730. · Zbl 0667.57005 · doi:10.1007/BF01217730
[3] X. G. Wen, Non-Abelian statistics in the fractional quantum Hall states, Phys. Rev. Lett. 66, 802 (1991), doi:10.1103/PhysRevLett.66.802. · Zbl 0968.81553 · doi:10.1103/PhysRevLett.66.802
[4] G. Moore and N. Read, Nonabelions in the fractional quantum hall effect, Nucl. Phys. B 360, 362 (1991), doi:10.1016/0550-3213(91)90407-O. · doi:10.1016/0550-3213(91)90407-O
[5] N. Read and E. Rezayi, Beyond paired quantum Hall states: Parafermions and in-compressible states in the first excited Landau level, Phys. Rev. B 59, 8084 (1999), doi:10.1103/PhysRevB.59.8084. · doi:10.1103/PhysRevB.59.8084
[6] F. D. M. Haldane and E. H. Rezayi, Spin-singlet wave function for the half-integral quantum Hall effect, Phys. Rev. Lett. 60, 956 (1988), doi:10.1103/PhysRevLett.60.956. · doi:10.1103/PhysRevLett.60.956
[7] A. Kitaev, Anyons in an exactly solved model and beyond, Ann. Phys. 321, 2 (2006), doi:10.1016/j.aop.2005.10.005. · Zbl 1125.82009 · doi:10.1016/j.aop.2005.10.005
[8] A. Y. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. 303, 2 (2003), doi:10.1016/S0003-4916(02)00018-0. · Zbl 1012.81006 · doi:10.1016/S0003-4916(02)00018-0
[9] B. Douçot, L. B. Ioffe and J. Vidal, Discrete non-Abelian gauge theories in Josephson-junction arrays and quantum computation, Phys. Rev. B 69, 214501 (2004), doi:10.1103/PhysRevB.69.214501. · doi:10.1103/PhysRevB.69.214501
[10] C. Xu and A. W. W. Ludwig, Topological quantum liquids with quaternion non-Abelian statistics, Phys. Rev. Lett. 108, 047202 (2012), doi:10.1103/PhysRevLett.108.047202. · doi:10.1103/PhysRevLett.108.047202
[11] S. A. Ocko and B. Yoshida, Nonperturbative gadget for topological quantum codes, Phys. Rev. Lett. 107, 250502 (2011), doi:10.1103/PhysRevLett.107.250502. · doi:10.1103/PhysRevLett.107.250502
[12] C. Chamon, D. Green and Z.-C. Yang, Constructing quantum spin liquids us-ing combinatorial gauge symmetry, Phys. Rev. Lett. 125, 067203 (2020), doi:10.1103/PhysRevLett.125.067203. · doi:10.1103/PhysRevLett.125.067203
[13] H. Yu, G. Goldstein, D. Green, A. E. Ruckenstein and C. Chamon, Abelian combinatorial gauge symmetry, (arXiv preprint) doi:10.48550/arXiv.2212.03880. · doi:10.48550/arXiv.2212.03880
[14] C. Chamon, D. Green and A. J. Kerman, Superconducting circuit realiza-tion of combinatorial gauge symmetry, PRX Quantum 2, 030341 (2021), doi:10.1103/PRXQuantum.2.030341. · doi:10.1103/PRXQuantum.2.030341
[15] M. d. W. Propitius and F. A. Bais, Discrete gauge theories, in Particles and fields, Springer New York, USA, ISBN 9780387984025 (1998), doi:10.1007/978-1-4612-1410-6_8. · doi:10.1007/978-1-4612-1410-6_8
[16] G. W. Moore, Quantum symmetries and K-theory, Vienna Lectures for PiTP (2015), https://www.physics.rutgers.edu/ gmoore/PiTP-LecturesA.pdf.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.