×

On matching and periodicity for \((N,\alpha)\)-expansions. (English) Zbl 07904957

Summary: Recently a new class of continued fraction algorithms, the \((N,\alpha)\)-expansions, was introduced in Kraaikamp and Langeveld (J Math Anal Appl 454(1):106-126, 2017) for each \(N\in \mathbb{N}\), \(N\ge 2\) and \(\alpha \in (0,\sqrt{N}-1]\). Each of these continued fraction algorithms has only finitely many possible digits. These \((N,\alpha)\)-expansions ‘behave’ very different from many other (classical) continued fraction algorithms; see also Chen and Kraaikamp (Matching of orbits of certain \(n\)-expansions with a finite set of digits (2022). To appear in Tohoku Math. J arXiv:2209.08882), de Jonge and Kraaikamp (Integers 23:17, 2023), de Jonge et al. (Monatsh Math 198(1):79-119, 2022), Nakada (Tokyo J Math 4(2):399-426, 1981) for examples and results. In this paper we will show that when all digits in the digit set are co-prime with \(N\), which occurs in specified intervals of the parameter space, something extraordinary happens. Rational numbers and certain quadratic irrationals will not have a periodic expansion. Furthermore, there are no matching intervals in these regions. This contrasts sharply with the regular continued fraction and more classical parameterised continued fraction algorithms, for which often matching is shown to hold for almost every parameter. On the other hand, for \(\alpha\) small enough, all rationals have an eventually periodic expansion with period 1. This happens for all \(\alpha\) when \(N=2\). We also find infinitely many matching intervals for \(N=2\), as well as rationals that are not contained in any matching interval.

MSC:

37E05 Dynamical systems involving maps of the interval
37E15 Combinatorial dynamics (types of periodic orbits)
37A45 Relations of ergodic theory with number theory and harmonic analysis (MSC2010)

References:

[1] Anselm, M.; Weintraub, SH, A generalization of continued fractions, J. Number Theory, 131, 12, 2442-2460, 2011 · Zbl 1263.11007 · doi:10.1016/j.jnt.2011.06.007
[2] Beltz, E.; Fokkink, R.; Kraaikamp, C., A note on binary quadratic forms with positive discriminant \(D\ne \square \), Proc. Rom. Acad. Ser. A, 16, 1, 28-31, 2015 · Zbl 1399.11109
[3] Burger, EB; Gell-Redman, J.; Kravitz, R.; Walton, D.; Yates, N., Shrinking the period lengths of continued fractions while still capturing convergents, J. Number Theory, 128, 1, 144-153, 2008 · Zbl 1210.11078 · doi:10.1016/j.jnt.2007.03.001
[4] Carminati, C.; Isola, S.; Tiozzo, G., Continued fractions with \(SL(2, Z)\)-branches: combinatorics and entropy, Trans. Am. Math. Soc., 370, 7, 4927-4973, 2018 · Zbl 1431.37038 · doi:10.1090/tran/7109
[5] Chen, Y., Kraaikamp, C.: Matching of orbits of certain \(n\)-expansions with a finite set of digits (2022). To appear in Tohoku Math. J arXiv:2209.08882
[6] Carminati, C.; Langeveld, N.; Steiner, W., Tanaka-Ito \(\alpha \)-continued fractions and matching, Nonlinearity, 34, 6, 3565-3582, 2021 · Zbl 1475.37010 · doi:10.1088/1361-6544/abef75
[7] Carminati, C.; Marmi, S.; Profeti, A.; Tiozzo, G., The entropy of \(\alpha \)-continued fractions: numerical results, Nonlinearity, 23, 10, 2429-2456, 2010 · Zbl 1233.11083 · doi:10.1088/0951-7715/23/10/005
[8] Carminati, C.; Tiozzo, G., A canonical thickening of \({\mathbb{Q}}\) and the entropy of \(\alpha \)-continued fraction transformations, Ergod. Theory Dyn. Syst., 32, 4, 1249-1269, 2012 · Zbl 1268.37040 · doi:10.1017/S0143385711000447
[9] de Jonge, J.; Kraaikamp, C., Gaps in intervals of \(n\)-expansions, Integers, 23, 17, 2023 · Zbl 07856145
[10] de Jonge, J.; Kraaikamp, C.; Nakada, H., Orbits of \(N\)-expansions with a finite set of digits, Monatsh. Math., 198, 1, 79-119, 2022 · Zbl 1494.11059 · doi:10.1007/s00605-021-01658-x
[11] Dajani, K.; Kraaikamp, C.; van der Wekken, N., Ergodicity of \(N\)-continued fraction expansions, J. Number Theory, 133, 9, 3183-3204, 2013 · Zbl 1325.11066 · doi:10.1016/j.jnt.2013.02.017
[12] Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers. Oxford University Press, Oxford, sixth edition: Revised by D. R. Heath-Brown and J. H, Silverman, With a foreword by Andrew Wiles (2008) · Zbl 1159.11001
[13] Kraaikamp, C.; Langeveld, N., Invariant measures for continued fraction algorithms with finitely many digits, J. Math. Anal. Appl., 454, 1, 106-126, 2017 · Zbl 1366.65002 · doi:10.1016/j.jmaa.2017.04.067
[14] Kalle, C.; Langeveld, N.; Maggioni, M.; Munday, S., Matching for a family of infinite measure continued fraction transformations, Discret. Contin. Dyn. Syst., 40, 11, 6309-6330, 2020 · Zbl 1452.11096 · doi:10.3934/dcds.2020281
[15] Katok, S.; Ugarcovici, I., Structure of attractors for \((a, b)\)-continued fraction transformations, J. Mod. Dyn., 4, 4, 637-691, 2010 · Zbl 1214.37031 · doi:10.3934/jmd.2010.4.637
[16] Langeveld, N.: Matching, entropy, holes and expansions. PhD thesis, Leiden University (2019)
[17] Nakada, H., Metrical theory for a class of continued fraction transformations and their natural extensions, Tokyo J. Math., 4, 2, 399-426, 1981 · Zbl 0479.10029 · doi:10.3836/tjm/1270215165
[18] Tanaka, S.; Ito, S., On a family of continued-fraction transformations and their ergodic properties, Tokyo J. Math., 4, 1, 153-175, 1981 · Zbl 0464.10038
[19] Zagier, D.B.: Zetafunktionen und quadratische Körper. Hochschultext [University Textbooks]. Springer, New York, Eine Einführung in die höhere Zahlentheorie. [An Introduction to Higher Number Theory] (1981) · Zbl 0459.10001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.